
www.manaraa.com

www.manaraa.com

Human-Computer Interaction Series

Editors-in-chief

John Karat
IBM Thomas J. Watson Research Center (USA)

Jean Vanderdonckt
Université catholique de Louvain (Belgium)

Editorial Board
Gregory Abowd, Georgia Institute of Technology (USA)
Gaëlle Calvary, LIG-University of Grenoble 1 (France)
John Carroll, School of Information Sciences & Technology, Penn State University (USA)
Gilbert Cockton, University of Sunderland (UK)
Mary Czerwinski, Microsoft Research (USA)
Steven Feiner, Columbia University (USA)
Elizabeth Furtado, University of Fortaleza (Brazil)
Kristina Höök, SICS (Sweden)
Robert Jacob, Tufts University (USA)
Robin Jeffries, Google (USA)
Peter Johnson, University of Bath (UK)
Kumiyo Nakakoji, University of Tokyo (Japan)
Philippe Palanque, Université Paul Sabatier (France)
Oscar Pastor, University of Valencia (Spain)
Fabio Paternò, ISTI-CNR (Italy)
Costin Pribeanu, National Institute for Research & Development in Informatics (Romania)
Marilyn Salzman, Salzman Consulting (USA)
Chris Schmandt, Massachusetts Institute of Technology (USA)
Markus Stolze, IBM Zürich (Switzerland)
Gerd Szwillus, Universität Paderborn (Germany)
Manfred Tscheligi, University of Salzburg (Austria)
Gerrit van der Veer, University of Twente (The Netherlands)
Shumin Zhai, IBM Almaden Research Center (USA)

www.manaraa.com

Human-Computer Interaction is a multidisciplinary field focused on human aspects of the
development of computer technology. As computer-based technology becomes increasingly
pervasive – not just in developed countries, but worldwide – the need to take a human-
centered approach in the design and development of this technology becomes ever more
important. For roughly 30 years now, researchers and practitioners in computational and be-
havioral sciences have worked to identify theory and practice that influences the direction of
these technologies, and this diverse work makes up the field of human-computer interaction.
Broadly speaking, it includes the study of what technology might be able to do for people
and how people might interact with the technology.

In this series, we present work which advances the science and technology of developing
systems which are both effective and satisfying for people in a wide variety of contexts.
The human-computer interaction series will focus on theoretical perspectives (such as formal
approaches drawn from a variety of behavioral sciences), practical approaches (such as the
techniques for effectively integrating user needs in system development), and social issues
(such as the determinants of utility, usability and acceptability).

For further volumes:
http://www.springer.com/series/6033

www.manaraa.com

Ahmed Seffah · Jean Vanderdonckt ·
Michel C. Desmarais
Editors

Human-Centered Software
Engineering

Software Engineering Models, Patterns
and Architectures for HCI

123

www.manaraa.com

Editors
Ahmed Seffah
Concordia University
Montreal QC H3G 1M8
Canada

Prof. Dr. Jean Vanderdonckt
Université catholique de Louvain
1348 Louvain-la-Neuve
Belgium

Michel C. Desmarais
Ecole Polytechnique de
Montreal
Montreal QC H3C 3A7
Canada

ISSN 1571-5035
ISBN 978-1-84800-906-6 e-ISBN 978-1-84800-907-3
DOI 10.1007/978-1-84800-907-3
Springer Dordrecht Heidelberg London New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2009926806

c© Springer-Verlag London Limited 2009
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.manaraa.com

CONTENTS

List of Figures xi

List of Tables xvii

Contributing Authors xxi

1
Human-Centered Software Engineering: Software Engineering Architectures,

Patterns, and Models for Human Computer Interaction
1

Ahmed Seffah, Jean Vanderdonckt, and Michel C. Desmarais

1.1 Scope 1

1.2 Specific Objectives of the CHISE Volume II 2

1.3 Overview 2

1.4 Chapter Summaries 3

References 6

Part I User Experiences, Usability Requirements, and Design

2
What Drives Software Development: Bridging the Gap Between Software and

Usability Engineering
9

Nuno J. Nunes

2.1 Introduction 9

2.2 Use Case Driven Software Development 11

2.3 Architecture Centric 14

2.4 From Essential Use Cases to the Conceptual Architecture 17

2.5 Tool Issues 20

2.6 Conclusion 23

References 24

3
Human Activity Modeling:

Toward a Pragmatic Integration of Activity Theory and Usage-Centered
Design

27

v

www.manaraa.com

vi HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Larry L. Constantine
3.1 Introduction 28

3.2 Activity Theory 29

3.3 Usage-Centered Design 31

3.4 Toward Integration 33

3.5 Human Activity Modeling 35

3.6 Design Implications 43

3.7 Process Implications 44

3.8 Application 45

3.9 Discussion 47

References 50

4
A User- entered Framework for Deriving a Conceptual Design from User Ex-

periences: Leveraging Personas and Patterns to Create Usable Designs
53

Homa Javahery, Alexander Deichman, Ahmed Seffah, and Mohamed Taleb
4.1 Introduction 54

4.2 A First Look at the Proposed Framework 55

4.3 Modeling User Experiences with Personas 56

4.4 Creating a Conceptual Design Using Patterns 57

4.5 An Illustrative Case Study 61

4.6 A Detailed Description of UX-process 70

4.7 Further Investigation: The P2P Mapper Tool 74

4.8 Conclusion 76

References 79

5
XML-Based Tools for Creating, Mapping, and Transforming Usability Engi-

neering Requirements
83

Fei Huang, Jon Titus, Allan Wolinski, Kevin Schneider, and Jim A. Carter
5.1 Introduction 83

5.2 Toolset Overview 85

5.3 Using XML to Structure UE Specifications 89

5.4 Mapping Between XML-based UE and SE Specifications 92

5.5 Translating Between XML-based UE Requirements Into SE Specifications 99

5.6 Conclusion 102

References 102

Part II Modeling and Model-Driven Engineering

6
MultiPath Transformational Development of User Interfaces with Graph

Transformations
107

Quentin Limbourg and Jean Vanderdonckt
6.1 Introduction 108

6.2 Related Work 110

6.3 Expressing the UI Development Cycle with Graph Transformations 111

6.4 Development Paths 118

6.5 Conclusion 134

C

www.manaraa.com

CONTENTS vii

References 135

7
Human-Centered Engineering with UIML 139
James Helms, Robbie Schaefer, Kris Luyten, Jo Vermeulen, Marc Abrams,
Adrien Coyette, and Jean Vanderdonckt

7.1 Introduction 140

7.2 UIML: An Overview 141

7.3 Tools for and Extensions of UIML 148

7.4 Improvements to UIML for Version 4.0 156

7.5 UIML-Related Standards 166

7.6 Conclusion 169

References 170

8
Megamodeling and Metamodel-Driven Engineering for Plastic User Interfaces:

Mega-UI
173

Jean-Sébastien Sottet, Gaelle Calvary, Jean-Marie Favre, and Joëlle Coutaz

8.1 Introduction 174

8.2 Plasticity: Case Study and Engineering Issues 175

8.3 Modeling, Metamodeling, and Megamodeling 182

8.4 MDE for Plasticity 190

8.5 Conclusion and Perspectives 196

References 197

9
Cause and Effect in User Interface Development 201
Ebba Thora Hvannberg

9.1 Introduction 201

9.2 Research Study 205

9.3 Eliciting Needs and Context 209

9.4 Design 210

9.5 Evaluation in Context 214

9.6 Foundation and Context of an Evaluation Model 215

9.7 Conclusion 218

References 219

Part III Interactive Systems Architectures

10
From User Interface Usability to the Overall Usability of Interactive Systems:

Adding Usability in System Architecture
225

Mohamed Taleb, Ahmed Seffah, and Daniel Engleberg

10.1 Introduction 226

10.2 Background and Related Work 227

10.3 Identifying and Categorizing Typical Scenarios 228

10.4 Patterns as Solutions to the Problems Documented as Scenarios 230

10.5 Modeling Cause-Effect Relationships Between Software Elements and Us-
ability 237

10.6 Conclusion and Future Investigations 242

www.manaraa.com

viii HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

References 243

11
Toward a Refined Paradigm for Architecting Usable Systems 245
Tamer Rafla, Michel C. Desmarais, and Pierre N. Robillard

11.1 Introduction 245

11.2 An Overview of Previous Work 246

11.3 Usability at the Requirements Definition Stage 248

11.4 Usability-Centered Software Development Process 251

11.5 Conclusion 253

References 254

12
Trace-Based Usability Evaluation Using Aspect-Oriented Programming and

Agent-Based Software Architecture
257

Jean-Claude Tarby, Houcine Ezzedine, and Christophe Kolski
12.1 Introduction 257

12.2 First Approach for Early Usability Evaluation: Injection of the Mechanism
of Traces by Aspect-Oriented Programming 258

12.3 Second Approach: Interactive Agent-Based Architecture and Evaluation
Module 263

12.4 Towards an Assistance System for the Evaluation of Agent-Based Interac-
tive Systems 266

12.5 Comparison Between the two Approaches 268

12.6 Conclusion 273

References 274

13
Achieving Usability of Adaptable Software: The AMF-Based Approach 277
Franck Tarpin-Bernard, Kinan Samaan, Bertrand David

13.1 Introduction 277

13.2 State-of-the-art 278

13.3 AMF and Its Relationships With Other Models 281

13.4 A Method for Designing Adaptable Applications 289

13.5 Future Developments and Conclusion 294

References 295

Part IV Reengineering, Reverse Engineering, and Refactoring

14
The GAINS Design Process:

How to do Structured Design of User Interfaces
in any Software

301

Martha J. Lindeman
14.1 The Costs of Changing User Interfaces 302

14.2 Overview of the GAINS Process 304

14.3 Overview of XP’s Planning Levels 305

14.4 Evaluations of Usability 313

14.5 Difficulties With Two XP Assumptions 314

14.6 Conclusions 314

References 315

Environment

www.manaraa.com

CONTENTS ix

15
Legacy Systems Interaction Reengineering 317
Mohammad El-Ramly, Eleni Stroulia, and Hani Samir

15.1 Introduction 318

15.2 Motivation for Interaction Engineers 318

15.3 Generic Methodology 319

15.4 Applications of Interaction Reengineering 323

15.5 From Websites to Web Services 325

15.6 Advantages and Limitations 331

References 332

16
Reverse Engineering for Usability Evaluation 335
Atif M. Memon

16.1 Introduction 335

16.2 GUI Model 338

16.3 Design of the GUI Ripper 345

16.4 Implementation 347

16.5 Empirical Evaluation 349

16.6 Related Work 351

16.7 Conclusions and Future Work 352

References 353

17
Task Models and System Models as a Bridge between HCI and SE 357
David Navarre, Philippe Palanque, and Marco Winckler

17.1 Introduction 358

17.2 Related Work 359

17.3 Why a Task Model is Not Enough 359

17.4 A Classical System Model 361

17.5 The Improved System Model 362

17.6 Scenarios as a Bridge Between Tasks and System Models 363

17.7 A Case Study 365

17.8 The Integration of the Models: CTT-ICO 375

17.9 Conclusions 382

References 384

Authors Index 387

Subject Index 395

www.manaraa.com

List of Figures

2.1 Multiple use case descriptions for the withdraw money use case in

the TaskSketch tool 13

2.2 Application example of the UP architecture versus a revised proposal

for interactive systems: top — transcription of a solution provided in

Conallen (1999); bottom — the new solution based on Nunes and

Cunha (2000) 15

2.3 From task flows to the system architecture: an example for a simpli-

fied bank system 18

2.4 Semi-automatic traceability support in TaskSketch 19

2.5 Tool usage based on a survey of 370 practitioners (Campos and

Nunes, 2007a) 21

2.6 Workstyle transition frequency and cost (Campos and Nunes, 2007) 22

2.7 Frequency distribution of the several views in TaskSketch (recorded

through automatic logging) 22

3.1 The structure of human activity (adapted from Engeström, 1999) 30

3.2 Hierarchical nature of activity (adapted from Engeström et al., 1999). 30

3.3 Example of an Activity Map in a retail sales context 39

3.4 Example of Participation Map for retail selling situation 41

3.5 Example of partial Activity-Task Map for retail selling 43

3.6 Logical overview of usage-centered design with activity modeling 46

3.7 System-centered Participation Map for collaborative usability

inspections 47

3.8 Performance Map for the UInspect collaborative usability inspec-

tions tool 48

4.1 Current problem of deriving a design from user experiences 55

4.2 The proposed framework 56

4.3 Example of persona 59

4.4 A Site Map page implemented using Tree Hyperbolic, a sophisticated

visualization pattern 60

4.5 A Home Page Design combining several patterns 61

xi

www.manaraa.com

xii HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

4.6 Questionnaire results of Novice and Expert users 64

4.7 Pattern Skeleton of NCBI home page 67

4.8 Pattern-Oriented Design of NCBI home page 68

4.9 The UX-P Design Process 71

4.10 Website structure using three basic information patterns 73

4.11 Clustering in P2P Mapper 75

4.12 Overview of P2P Mapper Tool 77

5.1 The structure of the USERLab toolset and its databases 86

5.2 Creating a requirement template record with the MAT 91

5.3 The interactions of the Methodology Mapping Tool 93

5.4 Basic interactions of the Methodology Mapping Tool 100

5.5 An integration and translation tool 100

6.1 Overall framework of our methodology 114

6.2 Transformations between viewpoints 117

6.3 A transformation system in our methodology 118

6.4 Framework for model transformations 118

6.5 Transformation paths, step and substep 119

6.6 Forward transformational development of UIs 120

6.7 Creation of abstract individual components derived from task model

leaves 121

6.8 Creation of abstract containers derived from task model structure 121

6.9 Creation of a facet for an abstract individual component derived from

task action type 121

6.10 A sequentialization of abstract individual component derived from

task temporal relationships 122

6.11 A placement of abstract container derived from task temporal rela-

tionships 122

6.12 A creation of windows derived from containment relationships at the

abstract level 123

6.13 A generation of window structure derived from containment relation-

ship at the abstract level 124

6.14 Creation of an editable text component (i.e., an input field) derived

from facets type of abstract components 124

6.15 A placement of graphical individual components derived from spa-

tiotemporal relationships at the abstract level 125

6.16 A window navigation definition derived from spatiotemporal rela-

tionships at the abstract level 125

6.17 Reverse transformational development of UIs 126

6.18 Creation of a facet at the abstract level derived from a type analysis

of graphical individual components 127

6.19 Definition of task action types derived from an analysis of facets at

the abstract level 128

6.20 Context adaptation at different levels of our framework 128

www.manaraa.com

LIST OF FIGURES xiii

6.21 Flattening of a task tree structure 129

6.22 Transforming all temporal relationship to concurrent 129

6.23 A merging of facets of abstract individual components 130

6.24 Erasing abstract individual components with no facets left 130

6.25 Initializing of the adaptation process by creating graphical compo-

nent to adapt into 131

6.26 Creation of tabbed item and transfer of the content of the adapted

window 131

6.27 Deletion of unnecessary containers 132

6.28 Merging of a non-editable text component (e.g., a label) and an ed-

itable text component (e.g., an input field) into one single editable

text component 132

6.29 Squeezing of a layout structure to display vertically 133

7.1 The Meta-Interface Model 145

7.2 The UIML specifications for the “Hello World!” example 146

7.3 Graphical overview of abstraction by using vocabularies 147

7.4 Listing of mapping of a date part on types of concrete widgets 148

7.5 A general screen-shot of the sketching tool 151

7.6 Various alternative representations of the same widget (here, a slider) 151

7.7 Example interface sketch 152

7.8 An example of a UI for a PDA and its corresponding UIML code 152

7.9 UIML code of the simple UI state machine example 158

7.10 Room reservation form and corresponding state machine 159

7.11 Part of the UIML code for the room reservation 159

7.12 Fully functional music player interface rendered on desktop com-

puter from UIML document 162

7.13 Fully functional music player interface rendered on PDA from UIML

document 163

8.1 Four functionally equivalent UIs that differ from the set of usability

criteria 177

8.2 A hand made mock-up similar to Figure 8.1d, but that improves the

Compatibility criterion thanks to a clickable map of the house 178

8.3 A distributed version of HHCS: selecting a room is done on the PDA

the temperature is specified on the PC 178

8.4 A CTT task model and an UML domain model of the case study 181

8.5 Self-description is three-fold. It covers the design rationale (i.e., the

design process transforming requirements into a resulting interactive

system (IS)), the resulting IS itself (i.e., a net of mappings linking

together different perspectives in a consistent way), and the evolution

process for supporting the switch to another interactive system. 182

8.6 The pyramid of models and the pyramid of actors 186

8.7 An example of megamodel charting the basic concepts and relations

in MDE 190

www.manaraa.com

xiv HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

8.8 The megamodel coverage 191

8.9 An excerpt of the megamodel for HCI. The coverage is limited to UI.

Neither the functional core nor the context of use are considered 192

8.10 A mapping metamodel for general purpose. The composition be-

tween Mapping and Metamodel is due to EMF (Eclipse Modeling

Framework) 193

8.11 Examples of mappings in HHCS. Mappings tell the usability prop-

erties they satisfy. Here properties are expressed in Bastien-Scapin’s

framework 194

8.12 Extra-UIs for observing and controlling the tasks distribution on plat-

forms 195

8.13 Extra- and Meta-UIs 196

8.14 Beyond UIs: Mega-UIs 197

9.1 Cause in Design and Effect in Problem Domain 203

9.2 Development model 216

10.1 The roles of the MVC architecture components 228

10.2 Traditional “twin towers” model of usability and other software qual-

ity factors 238

10.3 Revised model of usability, including possible types of cross-

relationships with architecture (bold links) 240

10.4 Most probable types of cross-relationships between usability and ar-

chitecture (bold links) 241

11.1 Three usability layers of Folmer’s framework 248

11.2 The requirements elicitation workflow 253

11.3 Extra activity in “understanding users’ needs” workflow detail 254

12.1 AOP basic principles compared to traditional object oriented-approach 259

12.2 Injection of mechanism of traces by aspects 261

12.3 Global agent-oriented architecture for interactive systems 264

12.4 Principle of coupling between agent-based architecture of the inter-

active system and its evaluation (Trabelsi, 2006) 265

12.5 Architecture of the evaluation assistance system 266

12.6 Association with each presentation agent of an informer agent 267

12.7 Evaluation assistance system 269

13.1 Arch model 280

13.2 The main AMF administrators 282

13.3 A simple interaction described with AMF 283

13.4 The AMF and the Arch models links 283

13.5 AMF meta-model 284

13.6 Links between AMF and the applicative classes (concrete facets) 284

13.7 The AMF editor (Architecture edition) 285

13.8 The AMF editor (Generated control visualization) 286

13.9 Example of relationships between tasks and ports in the interaction

model 288

www.manaraa.com

LIST OF FIGURES xv

13.10 Example of concretization of an abstract task and the associated ab-

stract port 289

13.11 A pattern for the abstract task “ Select and Move an element ” 290

13.12 Task and domain models after the first design step (music player sam-

ple) 291

14.1 Users’ goals and roles for the bulletin-board example 305

15.1 A general methodology for interaction reengineering 322

15.2 The CelLEST UI reengineering process 325

15.3 Interaction reengineering of websites to web services (Jiang and

Stroulia, 2004) 326

15.4 Interaction reengineering of form-based CUIs to Web services 329

15.5 System architecture for form-based CUI reengineering to Web ser-

vices (Canfora et al., 2006) 330

16.1 (a) Open window, (b) its Partial State 340

16.2 Examples of GUI forests 340

16.3 GUI Forest (Tree) for MS WordPad 342

16.4 Partial event-flow graph of MS WordPad 344

16.5 Visiting each node of a forest 345

16.6 Traversing and extracting the GUI of an application 347

17.1 Petri net representation of the concrete task for playing the game of 15 361

17.2 Presentation part of a basic system 362

17.3 Behavior of the basic system for the game of 15 362

17.4 Examples for the improved system model 363

17.5 A screen-shot of the radar screen with planes (left-hand side, one of

the planes 1123 is assumed) 367

17.6 The abstract task model of case study using CTT notation 367

17.7 The concrete and detailed task model of the case study 368

17.8 CTTE for extracting scenarios 370

17.9 Tools available for designers in PetShop environment 372

17.10 IDL description of the class “MefistoPlaneManager” 372

17.11 ObCS description of the class “MefistoPlaneManager” 373

17.12 Rendering function of the class “MefistoPlaneManager” 374

17.13 The activation function of the class “MefistoPlaneManager” 374

17.14 IDL description of the class “MefistoPlane” 374

17.15 ObCS of the class “MefistoPlane” 375

17.16 The presentation part of the class “MefistoPlane” 375

17.17 The rendering function of the class “MefistoPlane” 376

17.18 IDL description of the class “MefistoMenu” 376

17.19 ObCS of the class “MefistoMenu” 376

17.20 The presentation part of the class “MefistoMenu” 377

17.21 Rendering function of the class “MefistoMenu” 377

17.22 The activation function of the class “MefistoMenu” 377

www.manaraa.com

xvi HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

17.23 The framework for CTTE – PetShop integration 378

17.24 Association of interactive tasks and user services 380

17.25 The scenario player 381

17.26 Execution of the scenario of the system 381

17.27 Interaction between scenario and current execution: plane IDs are

selected at runtime 382

17.28 Interaction between scenario and current execution: values for fre-

quency are selected at runtime 383

17.29 End of the execution of the scenario on the system model 383

www.manaraa.com

List of Tables

3.1 Extended usage-centered design notation for activity modeling 36

3.2 Relationships between activities 38

4.1 Persona elements 58

4.2 Pattern Selection based on persona 66

4.3 UX-P Process steps and tool support 74

5.1 MAT-created XML for a PUF Task Record’s Identification Informa-

tion section 92

5.2 MAT-created XML for a PUF Task Record’s Linkage Information

Section 93

5.3 PUF UML tags and their relationship to UML 94

5.4 Some high-level mapping of entities from PUF to UML 95

5.5 High-level mapping of PUF tasks to UML actors 96

5.6 Direct attribute-to-attribute mapping of PUF to UML 96

5.7 Attribute-to-attribute part mapping of PUF to UML 97

5.8 Attribute to new attribute mapping of PUF to UML 98

6.1 A comparison of terms used in MDA and our methodology 116

7.2 Definition of LiquidAppsTM components 149

9.1 Methods used in case studies 206

9.2 Requirements for the design of an evaluation model 217

9.3 Requirements for a design model 217

10.1 Example of design patterns 233

10.2 A partial vision of the consolidated ISO 9126 measurement framework 239

10.3 Examples of relationships between invisible software entities and us-

ability factors 242

11.1 Canceling commands (Bass and John, 2003) 247

11.2 Providing feedback property (Folmer et al., 2003) 251

11.3 Summary of observations 252

12.1 Comparison between the two approaches 270

12.1 Comparison between the two approaches (continued) 271

xvii

www.manaraa.com

xviii HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

12.1 Comparison between the two approaches (continued) 272

14.1 List of users’ goals and roles identified in the Statements of Purpose 310

14.2 First-draft set of primary goals for all users of the bulletin-board system 310

16.1 Event types in some GUIs 343

16.2 Time for ripping windows and Java applications 350

16.3 Structural attributes (GUI forest) 351

16.4 Usability attributes for event-flow 352

www.manaraa.com

To my mentors, professors and friends Dr Rabia

Khaled and Pr Bertrand Tim David For their

support, advice and guidance.

Ahmed

To my wife Teodora and our daughter Marina.

Jean

To those aging loved ones,

may we comfort them as well as

they nurtured us.

Michel

xix

www.manaraa.com

Contributing Authors

Marc Abrams serves as Harmonia’s President and CTO. In the past, Dr. Abrams

has been with the former U.S. Army Concepts Analysis Agency, a post-doc in the

Distributed Operating Systems group in Stanford’s Computer Science Department, a

Visiting Scientist in the network protocol group at IBM’s Zurich Research Laboratory

in Switzerland, and an Associate Professor with Tenure in Computer Science at Vir-

ginia Tech in Blacksburg, Virginia. He has been the Principal Investigator for almost

$20M in research and development projects with IBM, MDA, NAVAIR, NAVSEA,

NSF, ONR, OSD, Raytheon, and SAIC. He received his Ph.D. from the University of

Maryland at College Park in Computer Science. Before Harmonia, Dr. Abrams was a

tenured associate professor at Virginia Tech, where his research on Human-Computer

Interfaces led to the creation of UIML and later the co-founding of Harmonia. UIML

forms the basis for Harmonia’s LiquidApps R© product. At Virginia Tech, he also co-

founded the Center for Human Computer Interaction, and worked with faculty in HCI

in fields ranging from cognitive psychology to human factors on scenario-driven HCI

design.

Gaëlle Calvary has been an assistant professor at UJF since 1999, and a member of

the HCI research group headed by Joëlle Coutaz. Her research area is UI plasticity.

She aims at providing models, methods and tools for supporting the engineering of

plastic UIs capable of overcoming multiple, dynamic, and unforeseeable contexts of

use. Her approach combines MDE and AI techniques.

Jim A. Carter is a Professor and Director of the Usability Engineering Research Lab

(USERLab) of the Computer Science Department, University of Saskatchewan. His

research investigates methods and methodologies for improving usability and acces-

sibility and for incorporating these concerns within traditional software engineering

methods and methodologies. Jim is involved as a Canadian expert in the development

of ergonomic, software engineering, user interface, and accessibility standards within

ISO and ISO/IEC JTC1.

xxi

www.manaraa.com

xxii HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Larry L. Constantine is Chief Scientist Constantine & Lockwood, Ltd, as well as

an ACM Distinguished Engineer and one of the pioneers of software design whose

current work in usage-centered design continues a long tradition of technical innova-

tion and professional leadership. In a career spanning four decades, he has contributed

numerous concepts and techniques forming the foundations of modern practice in soft-

ware engineering and applications development. Constantine has keynoted numerous

major international conferences and has taught in 20 countries around the world. He

is a prolific writer and a widely read columnist. Among his publications in both the

computer sciences and human sciences are over 150 articles and papers (see bibliogra-

phy) plus 17 books, including the award-winning Software for Use (Addison-Wesley,

1999), written with Lucy Lockwood; The Peopleware Papers (Prentice Hall, 2001);

and the software engineering classic, Structured Design (Prentice Hall, 1979), written

with Ed Yourdon. His books and papers have been translated into Chinese, Danish,

Dutch, German, Italian, Japanese, Portuguese, Russian, and Spanish. Constantine is

a professor in the Department of Mathematics and Engineering at the University of

Madeira, Funchal (Portugal) where he is also Director of LabUSE: the Laboratory for

Usage-centered Software Engineering. He also served on the faculty of the University

of Technology, Sydney (Australia), where he was Professor of Information Technol-

ogy. He is a graduate of the Massachusetts Institute of Technology, Sloan School of

Management.

Joëlle Coutaz has been professor at UJF since 1973 and the founder (in 1990) and

head of the HCI research group (Ingénierie de l’Interaction Homme-Machine) at Lab-

oratoire d’Informaitque de Grenoble. In April 2007, she was elected to the SIGCHI

Academy for ”leadership in the profession in Computer Human Interaction.” In June

2007, she received the Honorary Degree of Doctor of Science from the University of

Glasgow.

Adrien Coyette recently earned his Ph.D. in HCI at Université catholique de Louvain.

His thesis work won him the Brian Schackel 2007 award for the most outstanding

contribution with international impact in HCI. He is currently a member of the research

staff at UCL Unité de systèmes d’information in Louvain School of Management.

Bertrand David is a Full Professor of Computer Science at the Ecole Centrale de

Lyon (ECL) in Lyon working in the area of human-computer interaction, cooperative

systems and wearable computer use in pervasive environments. He was cofounder and

director for 8 years of a multidisciplinary research lab ICTT, working on cooperative

systems design and evaluation. He is coeditor in chief of RIHM: Francophone Journal

of Human-Machine Interaction.

Alexander Deichman is a graduate student with the Human-Centered Software Engi-

neering Group, including the Usability and Empirical Studies Lab, in the Department

of Computer Science and Software Engineering at Concordia University. He holds a

www.manaraa.com

CONTRIBUTING AUTHORS xxiii

Bachelor of Engineering (Computer) from Concordia University, and is now pursuing

his studies in Human-Computer Interaction. His research interests lie in designing

novel tools that can support the UI design process. He is currently working on a

tool called P2P Mapper, which helps designers in building pattern-oriented designs

based on user specifications. Alex has been involved in a number of usability projects,

mostly for web-based and biomedical applications.

Michel C. Desmarais has been an associate professor of Computer Engineering at

École Polytechnique de Montréal, Canada, since 2002. He was the head of the HCI

group at the Computer Research Institute of Montreal from 1990 to 1998, and was

manager of software engineering teams in a private software company for 4 years

afterwards. Besides user-centered engineering, his research interests are in artificial

Intelligence and user modeling. http://www.professeurs.polymtl.ca/
michel.desmarais/desmarais_michel_c.html

Mohammad El-Ramly completed his Ph.D. studies at Alberta University (Canada).

He is a lecturer in Computer Science at the University of Leicester (UK). His research

activities include software systems evolution, maintenance, reverse engineering, and

reengineering. He is also investigating the applications of data mining to software

data.

Daniel Engleberg earned a master’s degree in cognitive sciences from the Univer-

sity of Michigan and bachelor of science from McGill University. He is a senior user

experiences and usability professional with Nuange Technogies, a Montreal-based IT

company. Daniel is active with the Usability Professional Association and has orga-

nized several workshops on HCI and Software Engineering Integration.

Houcine Ezzedine is a maı̂tre de Conférences at the Université de Valenciennes. He

earned his Ph.D. in 1985 and his “Habilitation” in 2002 from the Université de Valenci-

ennes et du Hainaut-Cambrésis. He is the author of over 60 scientific publications and

an active member of the Laboratoire d’automatique de Mécanique et d’Informatique

industrielles et Humaines et au sein du groupe de recherche RAIHM : Raisonnement

Automatique et Interaction Homme-Machine.

Jean-Marie Favre is a Software Explorer and a Language Archaeologist practicing

XFOR. He serves as an Assistant Professor at UJF. His research work aims at (1) un-

derstanding phenomenon that arises during the long-term evolution of very large scale

software products, and (2) to improve software engineering techniques accordingly.

James Helms currently serves as a Software Engineer focused on usability and UI

development for Digital Receiver Technology, Inc. Before that, he was responsible for

ensuring that Harmonia, Inc. maintained a rigorous usability engineering ethic. He is

www.manaraa.com

xxiv HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

the Chair of the OASIS UIML standardization committee and served on the original

LiquidUI R© product development team. His research background includes the devel-

opment of a new usability engineering process model (the Wheel), in-depth analy-

sis of usability issues associated with deploying training documents and interfaces to

PDAs, and the field evaluation of a distributed, multiuser virtual science laboratory.

Mr. Helms received his master’s degree in Computer Science and Applications from

Virginia Tech in 2001.

Fei Huang is an M.Sc.¡ student majoring in usability engineering. She also has exper-

tise in databases and in accessibility engineering. Fei is a member of the USERLab of

the Computer Science Department, University of Saskatchewan.

Ebba Thora Hvannberg is a professor of computer science. She has a B.S. in com-

puter science from the University of Iceland, and an M.S. and a Ph.D. from Rensselaer

Polytechnic Institute, New York. Her research interests include human-computer in-

teraction and software engineering.

Homa Javahery is a researcher and project manager with the Human-Centered Soft-

ware Engineering Group, including the Usability and Empirical Studies Lab, in the

Department of Computer Science and Software Engineering at Concordia University.

She holds a Ph.D. in Computer Science (Human-Computer Interaction) from Concor-

dia University, and a Bachelor of Science degree from McGill University. She is com-

bining different design approaches from human sciences and engineering disciplines

to develop novel design frameworks which effectively address the user’s needs and ex-

periences. She has managed a number of large-scale usability studies and participated

in collaborative projects at the INRIA Research Institute in France and the Daimler-

Chrysler Research Institute in Germany. Her main areas of expertise are biomedical

applications and multiple user interfaces.

Christophe Kolski has been a professor in computer science at the Université de Va-

lenciennes et du Hainaut-Cambrésis since 1995. He earned his Ph.D. in 1989 and his

“habilitation” in 1995. He is the author of over 200 publications and a member of the

Laboratoire d’automatique de Mécanique et d’Informatique industrielles et Humaines

et au sein du groupe de recherche RAIHM : Raisonnement Automatique et Interaction

Homme-Machine.

Quentin Limbourg earned a Ph.D. in Management Sciences from the Management

School (IAG) of the University of Louvain (UCL). His dissertation topic was “Multi-

path Development of User Interfaces.” Currently he is an IT consultant at the R&D

unit of SmalS-MvM, a Scientific collaborator at the Management School (IAG) of the

University of Louvain (UCL), as well as a temporary invited lecturer (only for 2005-

2006) at the Computer Science Department of the Université Libre de Bruxelles. His

is investigating the application of software engineering to user interface development

www.manaraa.com

CONTRIBUTING AUTHORS xxv

including Model-Driven Architecture, Conceptual modeling and Languages for user

interface specification (e.g., UsiXML).

Martha J. Lindeman is president of Agile Interactions, Inc. in Columbus, Ohio. She

has over 20 years of experience in the design and evaluation of how people process

information in interactions with other people and technology.

Kris Luyten is working in the area of Human-Computer Interaction, focusing on ad-

vanced techniques and technologies that support the design, development, and deploy-

ment of traditional and non traditional user interfaces. These include context-sensitive,

collaborative, and embedded/ubiquitous user interfaces. He is Assistant Professor at

Hasselt University in Belgium and Adjunct group-leader HCI research group, Ex-

pertise Centre for Digital Media. He has authored and coauthored over 80 scientific

papers and has participated in 25 conference and workshops program committees.

Atif M. Memon is an Associate Professor in the Department of Computer Science,

University of Maryland. He received his B.S. in Computer Science in 1991 from the

University of Karachi, his M.S. in Computer Science in 1995 from the King Fahd

University of Petroleum and Minerals, and his Ph.D. in Computer Science from the

University of Pittsburgh. He was awarded a Gold Medal during his undergraduate ed-

ucation, and received fellowships from the Andrew Mellon Foundation for his Ph.D.

research. His research interests include program testing, software engineering, arti-

ficial intelligence, plan generation, reverse engineering, and program structures. He

is a member of the ACM and the IEEE Computer Society and serves on the editorial

boards of the Journal of Software Testing, Verification, and Reliability, The Open Soft-
ware Engineering Journal, and the Canadian Journal of Pure and Applied Sciences.

He has served on numerous National Science Foundation panels. He is currently serv-

ing on a National Academy of Sciences panel as an expert in the area of Computer

Science and Information Technology, for the Pakistan-U.S. Science and Technology

Cooperative Program, sponsored by the United States Agency for International Devel-

opment (USAID).

David Navarre is a Lecturer in Computer Science Human Computer Interaction and

Software Engineering at the University Toulouse 1. The main area of his research

activities is defining methods and techniques dedicated to real-time safety critical in-

teractive systems.

Nuno J. Nunes is an Associate Professor in the Mathematics and Engineering Depart-

ment of the University of Madeira where he lectures in the fields of software engi-

neering, programming languages and human-computer interaction. He holds a degree

in Software and Computer Engineering (LEIC) from the Instituto Superior Tecnico

(1994) of the Technical University of Lisbon, an MPhil in Software Engineering from

the University of Madeira (1997), and a Ph.D. (Doctor of Engineering Degree in Sys-

www.manaraa.com

xxvi HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

tems and Computer Science) in Software Engineering from the University of Madeira

(2001). In 1993 and 1994 he worked at INESC in the areas of telematic systems

and services and advanced computer architecture.Since 1995 he shifted his research

interests to software engineering and human-computer interaction. He was involved

in the organization of several international conferences (IUI/CADUI2004, UML2004

and CAISE2005) and workshops (Wisdom99, Tupis00, DSV-IS2003). He is also the

leading author of the Wisdom (Whitewater Interactive System Development with Ob-

ject Models) lightweight software engineering method, a UML method specifically

tailored for small software developing companies. Currently his research interests in-

clude User-centered Development, User Interface Design, Object-Oriented Methods,

Agile Software Development, and Organizational Engineering. He is a member of the

ACM, SIGCHI, SIGSOFT, and the IEEE Computer Society.

Philippe Palanque is full professor of computer science, University of Toulouse III

(France). He is the Head of Master 2 Professional in HCI at Toulouse University.

His interests cover a broad range of topics at the intersection of HCI and software

engineering including critical safety systems.

Tamer Rafla holds a master’s degree in software engineering from École Polytech-

nique de Montréal with his research nominated for the Best Thesis Award. His re-

search interests include HCI, requirements engineering, software architecture and soft-

ware process. He is currently working as a business consultant for a leading provider

of SAP consulting services. He is a member of the Usability Professionals Associa-

tion, the Worldwide Institute of Software Architects, and the Québec Order of Engi-

neers.

Pierre-N. Robillard is a full professor of software engineering at École Polytechnique

de Montréal. He leads the Software Engineering Research Laboratory whose research

interests include software process, software cognition, software quality assurance and

software applications to bio-informatics. He contributed to over 120 research papers,

conference proceedings and three books on software engineering related topics. The

latest book is Software Engineering Process with the UPEDU, Addison-Wesley, 2003.

He is a licensed professional engineer in the province of Quebec and in Canada, and a

member of the IEEE, ACM, EACE, and CIPS.

Kinan Samaan received his master’s degree in “computer science for the society ser-

vice.” In 2002 he was awarded a Ph.D. in the area of adaptation of human-computer

interface and software engineering from the Ecole Centrale de Lyon (France). He

is currently the executive manager of Mamoun International Corporation—Aleppo

branch, an international institute of higher education.

Robbie Schaefer received his doctoral degree at Paderborn University in 2007, where

he has been working as a research assistant since 2001. There, he worked on sev-

www.manaraa.com

CONTRIBUTING AUTHORS xxvii

eral European projects with a focus on the challenges of user interface development

for ambient intelligence. During this time he has authored about 30 publications in

this field. His dissertation is titled ”Model-Based Development of Multimodal and

Multi-Device User Interfaces in Context-Aware Environments.” He is active in the

standardization of the User Interface Markup Language and a member of the OASIS

UIML technical committee. Currently he works for Mettenmeier, a company which

focuses on geographical information systems and asset management for gas, water,

and electricity suppliers.

Kevin Schneider is Professor, Director of the Software Engineering Lab and Depart-

ment Head of the Computer Science Department, University of Saskatchewan. His

research investigates models, notations, and techniques to support collaborative soft-

ware evolution. He is an elected member of the IFIP working group 2.7/13.4 on user

interface engineering and the Prairie representative for the Canadian Association of

Computer Science.

Ahmed Seffah is currently professor of Information and Software Technology at

Ecole Hotelière Lausanne. He was previously an associate professor in the Depart-

ment of Computer Science and Software Engineering. From 2000 to 2008 he has

been the Concordia research chair on human-centered software engineering, a term he

coined. His research interests are at the intersection of human-computer interaction,

psychology, and software engineering, with an emphasis on usability and quality in

use metrics and measurement, human experiences modeling as well as patterns as a

vehicle for capturing and incorporating empirically valid best human-centric users and

developers’ experiences into software engineering processes. He is the cofounder of

the Usability and Empirical Studies Lab which provides an advanced facility to sup-

port research and development in the field of human-centered software. Dr. Seffah

is the vice chair of the IFIP working group on user-centered systems design method-

ologies and the cochair of the first working conference on Human-Centered Software

Engineering.

Jean-Sébastien Sottet is doing a Ph.D. in Computer Science under the supervision

of Gaëlle Calvary and Jean-Marie Favre. He is exploring Model Driven Engineering

for plastic User Interfaces (UIs), i.e., UIs capable of adapting to their context of use

(“User, Platform, Environment”) while preserving usability.

Eleni Stroulia is an associate professor, Department of Computer Science (University

of Alberta, Canada). Her recent research focuses on two major themes: (a) soft-

ware understanding and reengineering and (b) reflective agent-based architectures for

service-oriented Web-based applications.

Mohamed Taleb is a Ph.D. candiate at Concordia University and Ecole de Technolo-

gie Superieure de Montreal. He has more than 15 years’ experience as a senior soft-

www.manaraa.com

xxviii HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

ware engineer and HCI expert. His main interests include pattern driven, model based

and architecture-centric development approaches for interactive systems engineering.

Jean-Claude Tarby is a maı̂tre de Conférences at the Université des Sciences et

Technologies de Lille. He earned his Ph.D. in computer science at the Université

de Toulouse. He is a member of Equipe NOCE at Laboratoire TRIGONE.

Franck Tarpin-Bernard is an Assistant Professor of Computer Science at the Na-

tional Institute of Applied Sciences (INSA) in Lyon working in the area of human-

computer interaction adaptation. He completed his Ph.D. in 1997 in the area of com-

puter supported-collaborative work and software engineering. In 2000, he cofounded

Scientific Brain Training, the current world-leader company of cognitive training soft-

ware.

Jon Titus is a Database Analyst for the Potash Corporation and a member of the

USERLab of the Computer Science Department, University of Saskatchewan.

Jean Vanderdonckt is a Full Professor in Computer Science at Université

catholique de Louvain (Belgium), Louvain School of Management (IAG-LSM)

where he leads the Belgian Laboratory of Computer-Human Interaction (BCHI,

http://www.isys.ucl.ac.be/bchi). This laboratory is conducting research, development,

and consulting services in the domain of user interface engineering, a domain that

is located midway between software engineering, human-computer interaction, and

usability engineering. Jean Vanderdonckt is the founder and the coordinator of

the UsiXML Consortium (www.usixml.org) that structures activities towards the

definition and the usage of UsiXML (User Interface eXtensible Markup Language)

as a common User Interface Description Language. He is the coordinator of HCI

activities within the Similar network of excellence (www.similar.cc, The European

research taskforce creating human-machine interfaces SIMILAR to human-human

communication). He is also a member of the European COST n◦294 Action MAUSE

(www.cost294.org) on usability engineering. He is a senior member of IEEE, ACM,

and SIGCHI. He is a professor within the Faculty of Economical, Social and Political

Sciences (ESPO), School of Management (IAG), Universite Catholique de Louvain

La Neuve (Belgium). He also leads the BCHI Laboratory. He has coauthored and

edited several books and published over 100 publication in the fields of software

engineering and HCI.

Jo Vermeulen is a researcher at the Expertise Centre for Digital Media (EDM), a re-

search institute of Hasselt University. He obtained his M.Sc. in computer science from

Hasselt University in 2005 and joined EDM. Jo has been working with the User Inter-

face Markup Language (UIML) since 2004, when he did an internship under the super-

vision of Kris Luyten to improve the open source Uiml.net renderer. For his M.Sc. the-

sis, he extended UIML with a declarative, platform-independent layout specification

www.manaraa.com

CONTRIBUTING AUTHORS xxix

based on spatial constraints. He has been participating in the UIML Technical Com-

mittee since 2005. His research interests lie at the intersection of human-computer

interaction and ubiquitous computing. He is currently pursuing a Ph.D. in this topic.

Marco Winckler completed his Ph.D. studies in 2004, focusing on the navigation

modeling of complex Web applications. Since then, he has been a senior lecturer

at University Toulouse III. His current research mingles Human-Computer Interaction

methods and Software Engineering methods applied to the development of Web-based

interactive systems.

Allan Wolinski is a Web Developer for Point2 and a member of the USERLab of the

Computer Science Department, University of Saskatchewan.

www.manaraa.com

1 HUMAN-CENTERED SOFTWARE

ENGINEERING: SOFTWARE

ENGINEERING ARCHITECTURES,

PATTERNS, AND MODELS FOR HUMAN

COMPUTER INTERACTION
Ahmed Seffah*,

Jean Vanderdonckt**, and Michel C. Desmarais***

*Human-Centered Software Engineering Group, Concordia University, Canada

**Université catholique de Louvain, Belgium

***École Polytechnique de Montréal, Canada

1.1 SCOPE

The Computer-Human Interaction and Software Engineering (CHISE) series of edited

volumes originated from a number of workshops and discussions over the latest re-

search and developments in the field of Human Computer Interaction (HCI) and Soft-

ware Engineering (SE) integration, convergence and cross-pollination. A first volume

in this series (CHISE Volume I – Human-Centered Software Engineering: Integrating

Usability in the Development Lifecycle) aims at bridging the gap between the field

of SE and HCI, and addresses specifically the concerns of integrating usability and

user-centered systems design methods and tools into the software development life-

cycle and practices. This has been done by defining techniques, tools and practices

1

www.manaraa.com

2 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

that can fit into the entire software engineering lifecycle as well as by defining ways

of addressing the knowledge and skills needed, and the attitudes and basic values that

a user-centered development methodology requires. The first volume has been edited

as Vol. 8 in the Springer HCI Series (Seffah, Gulliksen and Desmarais, 2005).

1.2 SPECIFIC OBJECTIVES OF THE CHISE VOLUME II

In CHISE Volume I, we looked at means of integrating HCI and usability engineering

techniques into the well-established software engineering lifecycles which, many of us

claim, often lack the human-centered quality required for the development of highly

interactive systems. In this volume, we look at the converse side of this issue. A

development process may be dominated by HCI concerns and we may fail to integrate

SE method into it. We also look at means of bringing more formal and systematic

methods, and better tools for the HCI design and development of interactive systems.

A good example of how SE methods can have a positive impact in the design and

development of interactive systems is in the transformation of the Web development

process, from a print paradigm of online brochureware, to complex and highly interac-

tive Web-based systems. Web user interfaces (UIs) and HCI designers have to consider

new challenges such as content management, security versus usability, information ar-

chitecture and navigation support, etc. Besides Web engineering, there has also been

significant progress in terms of development approaches including component-based

engineering, separation of software concerns, model-driven architecture, formal spec-

ification methods, and reengineering techniques. Such methods are certainly useful

and needed by HCI researchers and practitioners. They help design the user interac-

tion with the system and build more usable interfaces.

However, these methods are not sufficient yet. New methods and ideas are needed

to address the particular issues of interaction engineering. They will borrow many of

the software engineering’s fundamental concepts and principles of SE emphasizing

the same technical and management activities.

1.3 OVERVIEW

This second volume aim to establish a meaningful dialog between the HCI community

and SE practitioners and researchers on the results (both good and bad), obstacles, and

lessons learned associated with applying software development practices in the field

of UI. The book will provide accounts of the application of SE practices (which may

be principles, techniques, tools, methods, processes, etc.) to a specific domain or to

the development of a significant interactive system.

This second volume includes 16 chapters organized in four sections. They provide

a roadmap for the future of UI SE especially how emerging SE techniques can help

HCI. The emphasis is put on the following topics:

Software engineering models, methods and tools for challenging HCI issues

such as adaptability, universal usability and accessibility

Software architectures for HCI

Model-driven architectures and engineering (MDA, MDE)

www.manaraa.com

SOFTWARE ENGINEERING FOR HUMAN COMPUTER INTERACTION 3

Reengineering models and techniques

Formal specifications methods and notations

Software for supporting the UI development lifecycle: requirements, analysis,

design, implementation, evaluation and traceability, and maintenance

1.4 CHAPTER SUMMARIES

We provide the summary of each of the 16 chapters that follow this introductory chap-

ter.

In Chapter 2, Nunes presents two important avenues for incorporating SE tech-

niques in usability engineering. The first issue addressed is use case driven develop-

ment. He discusses the importance of describing use cases through technology-free

and implementation-independent descriptions of user intentions and system responsi-

bilities. He provides examples that demonstrate innovative tools support for multiple

representations of essential use cases. The second issue is the architecture-centric na-

ture of modern software development. Nunes discusses the importance of identifying

usability aspects at the architectural level and describes an extension of the boundary-

control-entity UML-based pattern that supports dialogue and presentation elements

at the conceptual architectural level. This chapter presents and contrasts several ex-

amples that describe how the approach can be used to bridge software and usability

engineering and some innovative developer-centric tools that support this approach.

In Chapter 3, Constantine introduces human activity modeling as a systematic

approach to organizing and representing the contextual aspects of an interactive tool.

Activity theory provides the vocabulary and conceptual framework for understanding

the human use of tools and other artifacts. Simple extensions to the models of usage-

centered design are introduced that together succinctly model the salient and most

essential features of the activities within which tool use is embedded.

In Chapter 4, Javahery et al. highlight the challenge of combining individual de-

sign patterns to create a conceptual UI design that reflects user experiences and behav-

iors. They propose a user-centered design (UCD) framework that exploits the novel

idea of using personas and software design patterns together. Personas, an emerg-

ing concept in HCI, are used initially to collect, analyze and model user experiences

including their characteristics and tasks. UI design patterns are selected based on

persona specifications; these patterns are then used as building blocks for construct-

ing conceptual designs. Through a case study, they illustrate how personas and pat-

terns can act as complementary techniques in narrowing the gap between two major

steps in UCD. As a result of lessons learned from the study and by refining the UCD

framework, they define a more systematic process called UX-P (User Experiences to

Pattern).

In Chapter 5, Huang et al. suggest a set of XML-based and XMI-based tools for

creating usability engineering requirements and automatically transforming them into

SE specifications. Each of these tools is data-driven and uses XML to maximize flex-

ibility, accessibility and translatability. These tools are primarily intended for use by

usability engineers to create usability engineering (UE) requirements, analyze acces-

sibility issues, and automatically transform UI requirements into SE specifications.

www.manaraa.com

4 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

By transforming usability requirements into SE specifications, usability engineers can

help software engineers design systems that satisfy the applicable usability require-

ments. Additionally these tools can be used by researchers investigating usability

engineering methodologies.

In Chapter 6, Limbourg and Vanderdonckt investigate transformational develop-

ment, a SE technique that aims at developing software systems by transforming a

coarse-grained specification of a system to its final code through a series of transforma-

tion steps. Transformational development is known to bring benefits such as: correct-

ness by construction, explicit mappings between development steps, and reversibility

of transformations. Transformational development, applied to the development of UIs

of interactive systems, allows reusability of design knowledge used to develop UIs

and fosters incremental development of UIs by applying alternative transformations.

A mathematical system for expressing specifications and transformation rules is in-

troduced. This system is based on graph transformations. The problem of managing

the transformation rules is detailed, e.g., how to enable a developer to access, define,

extend, restrict or relax, test, verify, and apply appropriate transformations. A tool

supporting this development paradigm is also described and exemplified.

In Chapter 7, Helms et al. summarize the efforts devoted to the definition and

usage of UIML 4.0, which also covers dialog modeling. The User Interface Markup

Language (UIML) consists of a User Interface Description Language aimed at pro-

ducing multiple UIs from a single model for multiple contexts of use, in particular

multiple computing platforms, thus addressing the need for multichannel UIs. The

chapter describes the main parts of the UIML structure, i.e., structure, presentation

style, contents, behavior, connectivity, and toolkit mappings, and the integrated de-

velopment environment that supports the development lifecycle of multichannel UIs

based on UIML.

In Chapter 8, Sottet, Calvary, and Favre address the challenge of engineering Plas-
tic UIs, i.e., UIs capable of adapting to their context of use (User, Platform, Environ-

ment) while preserving usability. This chapter focuses on usability and proposes a

mega and meta model-driven approach. The first Megamodel was used to make ex-

plicit the relations between the core concepts of MDE: System, Model, Metamodel,
Mapping, and Transformation. When transposed to HCI, the Megamodel gives rise to

the notion of Mega-UI that makes it possible for the user (designer and/or end-user)

to browse and/or control the system from different levels of abstraction (e.g., user’s

tasks, workspaces, interactors, code) and different levels of genericity (e.g., model,

metamodel, meta-metamodel). A first prototype has been implemented using general

MDE tools (e.g., EMF, ATL).

In Chapter 9, Hvannberg suggests that a richer model of evaluation be created that

is built concurrently with the design activity. The evaluation model should describe

the implications work models have on design and record the cause/effect relationship

between design and the problem domain. It also suggests that the distinction between

elicitation and evaluation be diminished. The author presents two case studies from

air traffic control that are meant to support and motivate the need for such a model.

In Chapter 10, Taleb et al. take a look at traditional interactive system architec-

tures such as MVC and PAC. Such architectures decompose the system into two sub-

www.manaraa.com

SOFTWARE ENGINEERING FOR HUMAN COMPUTER INTERACTION 5

subsystems that are relatively independent, thereby allowing the design work to be

partitioned between the UIs and underlying functionalities. They extend the indepen-

dence assumption to usability, approaching the design of the UI as a subsystem that

can be designed and tested independently from the underlying functionality. As high-

lighted in this chapter, such Cartesian dichotomy can be fallacious, as functionalities

buried in the application’s logic can sometimes affect the usability of the system. The

authors propose a pattern-based approach for dealing with minimizing the effect of

functionalities on UI usability.

In Chapter 11, Rafla, Desmarais, and Robilllard build upon a recent software ar-

chitecture perspective on the usability of software systems which states that making

software more usable is a lot easier to do if the high-level architecture was designed

with usability in mind. However, there is a scarcity of methods and guidelines with the

scope to ensure that software developing corporations consider usability requirements

in their architectural design activities. This chapter addresses this need and provides

a more elaborate approach for architecting usable systems. A non-formal exercise re-

veals that this proposed methodology was well-received by participants with different

knowledge of usability. They found the process not too demanding as it guided them

in discerning the concerns that could have a real impact on the architecture.

In Chapter 12, Tarby et al. address the issue of evaluating how people use inter-

active applications. They describe two innovative evaluation approaches that exploit

the concept of traces as a way of capturing the usage of the system. The first approach

uses Aspect-Oriented Programming; the second proposes an explicit coupling between

agent-based architecture and evaluation agents. These two approaches are compared.

In Chapter 13, Tarpin-Bernard et al. an architectural framework for adapting in-

teractive applications to different contexts while ensuring its usability. After a brief

overview of the existing strategies for adaptation, they detail the different models that

are at the core of the framework. This includes task, concept, platform, and user mod-

els as well as an interaction model. All these models are linked via an underlying

architecture: the AMF which ensures the relationships between all the other models.

AMF encapsulates the key usability attributes.

In Chapter 14, Lindeman describes a user interaction software design process cre-

ated and used by a consultant to solve two challenges: (1) how to decrease the need

for changes in the UI by subsequent system releases without doing big design up-

front, and (2) how to apply a structured user-interaction design process no matter

when brought into a project or what software methodology was being used. The four

design levels in the process parallel Beck and Fowler’s four planning levels described

in their book Planning Extreme Programming. The design process is called “GAINS”

because the user-interaction designer has only Attraction, Information and Navigation

to connect users’ Goals with the project sponsors’ criteria for Success. Thus there are

five questions, one for each letter of the acronym GAINS, asked at each of four levels

of design: The first two design levels, Rough Plan and Big Plan, focus on business-

process actions and objects that define users’ goals. The next two levels, Release

Planning and Iteration Planning, focus on the UI objects that support the tasks neces-

sary to achieve those goals. Release Planning identifies the displays the user sees for

each goal included in that release, and the across-display navigation for the proposed

www.manaraa.com

6 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

functionality. Iteration Planning focuses at a lower level of interaction, such as the

within-display navigation among controls. For a voice system, the word “sees” would

be changed to “hears,” but the design process and the levels of focus are the same for

UIs that are vision output (e.g., GUIs), voice output (e.g., IVRs) or multimodal.

In Chapter 15, El-Ramly et al. present a lightweight approach for reengineering

the HCI and/or interaction with other software systems. While interaction reengineer-

ing can be achieved by changing the source code and design (e.g., library replacement,

refactoring, etc.) resulting in a different UI, they look at interaction reengineering

methods that do not involve changing the source code or internal design of the sys-

tem. Instead, they focus on methods and techniques for wrapping and packaging the

existing interaction layer to reproduce it in a different format, e.g., on a different plat-

form or to integrate the legacy system services in another application possibly under a

different architecture paradigm, e.g., service-oriented architectures (SOA).

In Chapter 16, Memon reinforces the fact that while manual evaluation is resource

intensive, performing automatic usability evaluation usually involves the creation of

a model of the GUI, a resource intensive step that intimidates many practitioners and

prevents the application of the automated techniques. He presents GUI Ripping, a new

process that automatically recovers models of the GUI by dynamically traversing all

its windows and extracting all the widgets, properties, and values. The usefulness of

this process is demonstrated by recovering a structural model called a GUI forest and

dynamic models called event-low graphs and integration trees. Results of case studies

show that GUI Ripping is effective and requires very little human intervention.

In Chapter 17, Navarre et al. address one of the major weaknesses of task mod-

eling, a largely used method in HCI. Task modeling does not contain sufficient and

necessary information to permit automatic generation of interactive systems. They

propose a set of tools supporting the development of an interactive system using two

different notations. They suggest supplementing Concur Task Tree (CTT) for task

modeling with Interactive Cooperative Objects (ICO) for system modeling. Task and

systems models represent two different views of the same system (a user interacting

with an interactive system). They are built by different people (human factors spe-

cialist for the task models and software engineer for the system models) and are used

independently. In particular, they introduce scenarios as a bridge between these two

views. In task modeling, scenarios are seen as a possible trace of user’s activity. In

system modeling, scenarios are seen as a trace of user’s actions. A case study from

Air Traffic Control is presented. As both CTT and ICO notations are supported by

tools (environments are respectively CTTE and PetShop), an integration tool based on

scenarios is presented.

References

Seffah, A., Gulliksen, J., and Desmarais, M. C., editors (2005). Human-Centered Soft-
ware Engineering: Integrating Usability in the Development Process. New York:

Springer-Verlag.

www.manaraa.com

I User Experiences, Usability
Requirements, and Design

www.manaraa.com

2 WHAT DRIVES SOFTWARE

DEVELOPMENT: BRIDGING THE GAP

BETWEEN SOFTWARE AND USABILITY

ENGINEERING
Nuno J. Nunes

University of Madeira and LabUSE

Abstract. This chapter presents two important issues integrating software and us-

ability engineering. The first issue is use case driven development, we discuss the

importance of describing use cases through technology-free and implementation inde-

pendent descriptions of user intentions and system responsibilities. We provide exam-

ples that demonstrate innovative tools support for multiple representations of essential

use cases. The second issue is the architecture-centric nature of modern software de-

velopment. Here we discuss the importance of identifying usability aspects at the ar-

chitectural level and describe an extension of the boundary-control-entity UML-based

pattern that supports dialogue and presentation elements at the conceptual architectural

level. In this chapter we present and contrast several examples that describe how our

approach can be used to bridge software and usability engineering and also supported

by innovative developer-centric tools.

2.1 INTRODUCTION

The integration of software and usability engineering is increasingly becoming an im-

portant problem in modern software development. In a recent article Seffah and Metz-

9

www.manaraa.com

10 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

ker (2004) discuss five major obstacles and myths that prevent harmonious integration

between the two disciplines. Here we will discuss three major obstacles identified

by Seffah and Metzker: i) that user-centered-design (UCD) techniques are decoupled

from the software development lifecycle and how they could be more easily integrated,

ii) the communication problems between usability and software engineering special-

ists and how we could extend standard notation like the UML to overcome the com-

munication barrier, and finally iii) how we could create computer-assisted usability

engineering tools that are not only more usable for software developers but that also

foster the integration of UCD techniques into modern software development.

User-centered design (UCD) is currently defined in the ISO 13407 standard and

typically entails involving users in the design and evaluation of the system so that

feedback can be obtained. Therefore, UCD produces software products that are easier

to understand and use; improves the quality of the life of users by reducing stress and

improving satisfaction; and improves the productivity and operational efficiency of

individual users and the overall organization.

Activities required to achieve UCD are well known: understand and specify the

context of use, specify users and their organizational requirements, produce designs

and prototypes, and carry out user-based assessment.

Despite the fact that principles and activities behind UCD were identified during the

1980s (if not earlier) there is still discussion about the integration of UCD practices in

modern software development (Seffah et al., 2005). One of the main activities of the

IFIP working group on user interface engineering is bridging the SE and HCI com-

munities (http://www.se-hci.org). Conversely, careful inspection of modern

lifecycle models (for instance, the Unified Process (UP) and its commercial counter-

part, the Rational Unified Process, RUP) clearly reveals that some UCD principles and

activities are an integral part of modern software development.

The UP is use case driven to denote the emphasis on knowing and understanding

what real users want and need to accomplish with the envisioned system.

The UP is architecture-centric, meaning that it focuses on the architecturally

significant static and dynamic aspects of the system and the architecture grows

out of the needs of the business and users reflected in the use cases.

The UP is also iterative and incremental, meaning that development evolves in

terms of mini-projects that correspond to controlled and planned iterations that

result in increments to the end product.

One can argue that those characteristics of UP are not sustained in specific process

activities. However, the same argument could be used to discuss the practical appli-

cability of UCD. In essence, both UCD and UP (or RUP) are high-level models that

define a set of principles and activities. Thus, discussing their practical applicabil-

ity in terms of those high-level characteristics is an interesting but controversial (and

perhaps pointless) exercise. Moreover, while UP and RUP define specific and well-

documented workflows, activities and roles, UCD (at least at the standard level) lacks

such a fine-grained description.

www.manaraa.com

WHAT DRIVES SOFTWARE DEVELOPMENT 11

At the other extreme of modern software development, we have the so-called agile

movement. Again we can find similarities between UCD principles and, for instance,

the principles behind the Agile Manifesto (Agile Alliance, 2003).

Agile methods promote that their highest priority is to satisfy customers through

early and continuous delivery of valuable software.

Agile methods welcome changing requirements and deliver working software

frequently.

Finally the agile movement promotes that business people and developers must

work daily throughout the project.

Again one could argue that agile methods are just another buzzword for chaotic de-

velopment. But evidence exists that lightweight techniques—such as small and con-

tinuous releases, refactoring, pair-programming and on-site customers—contribute to

promote communication, simplicity and feedback.

2.2 USE CASE DRIVEN SOFTWARE DEVELOPMENT

The use case driven nature of the UP (and RUP) is grounded on two basic assump-

tions. On the one hand, the use case strategy forces developers to think in terms of

real value to the users and not just in terms of internal functionalities. On the other

hand, use cases drive the development process because they are used to understand the

requirements. Use cases drive the development and review of the analysis and design

level models, and they also facilitate testing of the implementation components for

conformance with the requirements (Jacobson et al., 1999).

The adoption of use cases in the UML acknowledges this importance of identifying

the different roles users play when interacting with an application supporting their

tasks. However they are still mainly used to structure the application internals and do

not provide an efficient way to support the usability aspects of interactive systems.

The major problems with these descriptions of user behavior are related to the

system-centric nature of use cases. Constantine and Loockwood (1999) argue that

“conventional use cases typically contain too many built-in assumptions, often hidden

and implicit, about the form of the user interface that is yet to be designed.” Such

argument led the authors to propose the essential use case narrative, a technology-

free, implementation-independent, structured scenario expressed in the language of

the application domain and end-users. As the original authors discuss in Constantine

and Lockwood (1999) this problem is evident in many examples from the leading

promoters of the UP (Kruchten, 1998).

Figure 2.1 presents an example of multiple representations of essential use cases

supported in the TaskSketch tool (http://dme.uma.pt/tasksketch). The

TaskSketch tool is an example of a new generation of computer-assisted usability en-

gineering tools that promote bridging between SE and HCI (Constantine and Campos,

2005). A conventional CASE tool would typically provide developers with the capa-

bility of storing the use case description in the form of structured text. In contrast, the

TaskSketch tool enables developers to create and manipulate the use case description

www.manaraa.com

12 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

in different notations that are synchronized and semantically stored as a UML activ-

ity diagram. The three views supported by the TaskSketch tool are the participatory

view, which is a typical result of a participatory session with end-users (obtained by

manipulation of sticky notes); the use case narrative proposed by Constantine that can

also be printed in index cards for stacking and ordering by the different stakeholders;

and the activity diagram which could include additional details relevant to developers

but that are not depicted in the other views. The activity diagram view is also UML

compliant, thus it can easily be exported into XMI and interchanged with other tools.

The previous example demonstrates why conventional use cases are not

user-centered and do not express the requirements in a way that maximizes value

towards end-users and business. Although this distinction seems marginal at the

notational level, the impacts at the requirement level are considerable. Conventional

use cases (and in particular their descriptions) are complex and not suitable for

cooperative participatory development. On the other hand, since use cases drive

development, a user-centered perspective is clearly fundamental to reduce the

complexity of software systems. Driving development from a system-centric use case

perspective usually leads to the well-known problem of “featurism” (or “fatware”),

that is, development is driven by functionalities that are not necessarily adding value

to users and business.

The same arguments could be applied to agile development methods. Even though

agile methods do not endorse modeling, there is a specific reference to the role of “user

stories” or similar requirement specification strategies in approaches like XP. There

are important similarities with use cases and their role in the UP and user-stories and

their role in XP. On the one hand, both use cases and user stories are used to prioritize

development (user stories are used in XP to drive release planning). On the other hand,

user stories are inherently user-centered, they are produced by XP customers and used

throughout the lifecycle to drive the creation of acceptance tests (Beck, 2000).

There is, however, an important distinction between UP and XP at this level. In

UP, use cases drive the architecture, or in other words the architecture realizes the

use cases. In XP, the architectural spike (and the system metaphor) are developed

in parallel before release planning. Again careful inspection is required to analyze

these subtle but important distinctions. Since XP does not promote modeling, user

stories are usually captured in natural language in the form of what is usually known

as scenarios in the HCI field.

Scenarios are an important technique to increase communication and discuss re-

quirements. However, scenarios are the opposite of essential descriptions of use cases.

Scenarios are inherently full of assumptions and details, which increase their com-

munication effectiveness. However, those same characteristics obstruct the creativity

required to generate simple and essential descriptions of requirements. Moreover,

maintaining requirements in the form of natural language user stories is recognizably

an overwhelming activity, in particular in agile environment and iterative development

lifecycles.

www.manaraa.com

WHAT DRIVES SOFTWARE DEVELOPMENT 13

F
ig

u
re

2
.1

M
u
lt
ip

le
u
se

ca
se

d
es

cr
ip

ti
on

s
fo

r
th

e
w

it
h
d
ra

w
m

on
ey

u
se

ca
se

in
th

e
T
as

kS
ke

tc
h

to
ol

www.manaraa.com

14 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Despite the fact that there is strong evidence that XP and other agile methods work

in practice, it is arguable that this effectiveness is related to the role of user stories. The

important role that XP’s architectural spike plays in the overall lifecycle indicates that

user stories are mainly used to prioritize development and not to drive the architecture.

2.3 ARCHITECTURE CENTRIC

The conceptual architecture in UP refers to the most significant static and dynamic as-

pects of the system. The architecture grows out of use cases but involves many other

factors, such as platform restrictions, the existing reusable components, deployment

considerations, legacy systems and so on. Use Cases and the architecture correspond

to the function and form of the software system and must evolve in parallel. The use

cases define the system functionalities and the architecture focuses on understandabil-

ity, resilience to future changes and reuse.

The UP promotes the boundary-control-entity pattern to describe the way use cases

are realized at the conceptual (architectural) level. The reason behind this partitioning

of analysis classes into information (entity), behavior (control) and interface (bound-

ary) is to promote a structure more adaptable to changes by concentrating changes on

different class stereotypes. This approach is conceptually similar, although at a dif-

ferent granularity level, to the PAC and MVC patterns. However, the UP pattern fails

to map to the well-known physical architectural models of interactive systems — for

instance, Seeheim and Arch models (Nunes and Cunha, 2001).

In Nunes and Cunha (2001), we propose an extension of the UP architectural pat-

tern that includes additional dialogue and presentation dimensions to the original in-

formation structure of the UP boundary-control-entity pattern. Our approach aims at

creating a new architectural framework more adapted to the requirements of interactive

systems. Therefore, the boundary-control-entity pattern is extended with additional

task and interaction space class stereotypes:

<<task>> classes that are used to model the structure of the dialogue between

the user and the system in terms of meaningful and complete sets of actions

required to achieve a goal; and

<<interaction space>> classes are used to represent the space within the user

interface of a system where the user interacts with all the functions, containers,

and information needed for carrying out some particular task or set of interre-

lated tasks.

Figure 2.2 illustrates the differences between our approach and the conventional archi-

tectural descriptions used by the UP (and RUP). At the top of the figure is an example

of a conceptual architecture provided in Conallen (1999) for a glossary Web applica-

tion. The architecture in the example supports three use cases (read glossary, search
glossary and edit glossary entry).

As we can see from the top model in Figure 2.2, the conventional solution does not

separate the user interface from the internal functionality. For instance, browse glos-
sary and search glossary are two control classes that contain both the business logic

required to browse and search glossary entries, and the structure of use required to

www.manaraa.com

WHAT DRIVES SOFTWARE DEVELOPMENT 15

Figure 2.2 Application example of the UP architecture versus a revised proposal for in-

teractive systems: top — transcription of a solution provided in Conallen (1999); bottom

— the new solution based on Nunes and Cunha (2000)

Glossary entry

Browse Glossary

Glossary browser

Reader

Editor

Home Page

Browse Results

Search Results

Search Form

Entry Form

Search Glossary

Glossary Updates

Reader

Editor

Glossary editor

Read glossary

Search glossary

Edit glossary

Glossary retriever

Glossary updater

Glossary entry

www.manaraa.com

16 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

perform those tasks. Furthermore, the conventional model contains built-in assump-

tions about the user interface technology and the interaction styles used to implement

the user interface of the glossary application. For instance, the boundary classes Home
Page, Search form and Entry form are obviously indicating a form-based interaction

style and a Web-based user interface. Assuming technology constraints at the analysis

level suggests that this architecture could not support a different technology or inter-

action style — for example, a Java applet — therefore compromising the potential for

reuse.

At the bottom of Figure 2.2 we illustrate a solution for the same problem based on

the extended UI architecture. The new architecture clearly supports the well-known

best practice of separation of concerns between the internal functionality and the user

interface specifics. The advantages are evident: the structure of use related to reading,

searching and editing the glossary is contained in specific classes (the read glossary,

search glossary and edit glossary task classes), but also the structure of the internal

functionality becomes simpler because it does not have to contain the user interface

behavior. Moreover, there is a clear separation between the presentation of the user in-

terface (glossary browser and glossary editor interaction space classes) and the struc-

ture of use. The resulting architecture is therefore, simpler (both in terms of the user

interface and the internal functionality), more robust (changes in the presentation of

the user interface don’t impact the structure of use and the internal functionality, and

vice versa), and more reusable (the structure of use can be reused with respect to dif-

ferent implementation technologies).

Finally our approach seamlessly maps different implementation architectures.

For instance, assuming typical three-tier implementation architecture for a

Web-application, interaction spaces and task classes are candidates for client-side

components, whereas control classes are candidates for the middleware tier and

entities for the data tier.

Agile methods usually promote a simplified view of architecture. XP promotes an

architectural spike with the main purpose of managing and assessing tough technical

or design problems. This is usually accomplished developing simple systems, which

only address the problem under examination (architecturally significant) and ignore

all others. The main goal of the architectural spike is to reduce the risk of a significant

technical problem, or increase the reliability of a user story.

At the architectural level the commonalities between agile methods and the UP

are not evident. UP is architecture-driven but suggests a prescriptive approach to-

wards architectural issues. The architecture in the UP emerges directly from the use

case model. The prescriptive nature of the conceptual architectural model implies that

iterative and incremental development is preceded by an effort to analyze all the archi-

tecturally significant classes emerging from the complete use case model. That way

UP aims to detect major technical problems a priori. Furthermore, there is no spe-

cific effort in trying to use the architecture to increase the reliability of requirements,

something XP emphasizes.

There are two important issues contrasting XP and UP at the architectural level.

XP relies on vertical throwaway prototyping techniques to test potential architectural

problems, both non functional (technical problems) and functional (misconceptions

www.manaraa.com

WHAT DRIVES SOFTWARE DEVELOPMENT 17

emerging from user stories). The major problem with this approach is that foremost

architectural problems emerge late during development when the different compo-

nents of the system are integrated or implemented incrementally. XP assumes that

developers can “guess” the main architectural problems, while also relying on refac-

toring techniques to simplify design as development progresses. This “wild guess”

approach clearly contrasts the prescriptive architecture-centric nature of the UP. The

second issue is related to the way both lifecycle models cope with architectural prob-

lems associated with misconceptions of user requirements. XP emphasizes this second

issue, and relies on user stories, fast release cycles, refactoring and user evaluation to

quickly identify and correct problems. On the contrary, UP relies on defining a con-

ceptual architecture model, based on prescriptive descriptions of requirements (the

use case model). Since conventional use cases are system-centric (and therefore the

conceptual architecture — as we discussed previously), the UP practice assumes that

architectural problems can only be identified when developers can argue over an or-

thogonal view of the foremost system components.

There are increasing concerns about supporting usability through software archi-

tecture. Bass and John isolated 26 usability facets that require software architectural

support other than separating the user interface (Bass and John, 2001). Those facets

provide important usability benefits and most of them are related to user tasks that

are not separated in the boundary-control-entity pattern. By introducing user tasks

and interaction spaces at the architectural level, our approach increases the support for

well-known implementation models like Seeheim and Arch. We also believe that our

proposal will foster increased architectural support for usability facets such as those

identified by Bass and John.

2.4 FROM ESSENTIAL USE CASES TO THE CONCEPTUAL

ARCHITECTURE

An important aspect regarding the system architecture is the way architecturally sig-

nificant classes are identified from the requirements descriptions. Both UP and XP

encourage a clear connection between the requirements (use cases or user stories) and

the conceptual architecture of the system. However, none of the approaches proposes

a simple mapping between the two models.

In Figure 2.3 we illustrate how our approach supports the transition and traceability

between task flows and the (extended) UML-based conceptual architecture described

in the previous section. At the left-hand side of Figure 2.3 is a use case diagram and

the corresponding essential task flows taken from the TaskSketch tool (depicted as

UML activity diagrams). The model expresses three use cases for a simplified bank

system: check account balance, transfer money and check card transactions. To the

right-hand side of the figure is a tentative conceptual architecture expressed in terms of

<<entity>>, <<control>>, <<task>> and <<interaction space>> stereotyped

classes that realize the essential use cases. The dashed arrows between those two

diagrams represent mappings used to identify stereotyped classes from the essential

task flows (which are in fact traceability dependencies).

As we can see from this example, activities corresponding to the user intentions are

candidates to <<task>> classes. Conversely, activities corresponding to the system

www.manaraa.com

18 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 2.3 From task flows to the system architecture: an example for a simplified bank

system

responsibilities are candidates to <<entity>> and <<control>> classes. Finally,

control flows that traverse the swimlanes involve an interaction between the user and

the system, thus correspond to <<interaction space>> classes. Although the map-

pings described previously are not completely straightforward, they provide develop-

ers with a more seamless way of connecting the conceptual architecture of the system

to the requirements. This connection is supported in a semi-automatic way by the

TaskSketch tool. Using a special cursor tool, developers can drag and drop activities

to the architectural model therefore creating new traceability dependencies between

the description of the essential use cases (task flows) and the class model depicting

the conceptual architecture. Figure 2.4 illustrates the TaskSketch tool support for this

traceability mechanism. At the far left of the screen is the list of supported essential

use cases and in the middle the multiple view task flows that describe the selected use

case. Through simple drag and drop of the activities in the task flow, developers can

create the architectural model and even manage multiple dependencies depicted by a

color schema. In the example illustrated, each use case corresponds to one color and

each class exhibiting the same color in the right-hand pane represents a traceability

dependency.

www.manaraa.com

WHAT DRIVES SOFTWARE DEVELOPMENT 19

Figure 2.4 Semi-automatic traceability support in TaskSketch

The use case driven nature of modern software development relies on the assump-

tion that systems are built in terms of iterations (or increments) that correspond to the

implementation of the different use cases. The classes of the conceptual architecture

realize the use cases, meaning that in order to implement a specific use case devel-

opers are required to implement all the classes that realize that use case. Figure 2.4

demonstrates this principle through a color schema. For instance, the identify self
<<task>> class realizes the three use cases in the example. In other words, to de-

liver any of the three use cases it is mandatory that the identify self <<task>> class is

fully implemented. At the other extreme are the account transfer or the card selector
<<interaction space>> classes.

The enhanced traceability provided with our approach leverages crucial develop-

ment activities, like requirements negotiation, release planning and estimation of de-

velopment cost and effort. A simple inspection of the models in Figures 2.3 and 2.4

provides developers a broad idea of the development effort required to implement

each use case. Although development effort is not a direct function of the number

of classes to implement, one can clearly infer that implementing the account transfer

use case will require an increased development effort over the other use cases in the

example.

Finally, our approach brings user interface elements to the conceptual architectural

level. Even though it is not our remit here to discuss the impact of the user interface

at the architectural level (see Bass and John, 2001) for a list of usability facets), this

issue is ultimately important, since a significant part of today’s software development

effort is devoted to the user interface (Myers and Rosson, 1992). With the advent

of multiplatform development, the issue of deploying software systems that require

www.manaraa.com

20 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

multiple user interfaces is outstanding. One of the goals with our extended architec-

tural model is raising usability elements to the architectural level. The conventional

UML approach not only merges human and system interaction (in <<boundary>>
classes), but also does not detach the dialogue (how users perform their tasks) and

presentation dimensions (the overall organization of tools and materials required to

perform a task). Our approach enables this enhanced separation of concerns through

the <<task>> and <<interaction space>> stereotyped classes. Again considering

the example in Figures 2.3 and 2.4, one could argue that deploying such a system over

multiple channels (for instance, the Web, mobile device, etc.) would not impact the

conceptual architecture. However, that assumption is not accurate. Not only would

deploying that system over multiple platforms require extensive development effort,

but it would also involve careful planning of the user interface structure and dynamics.

2.5 TOOL ISSUES

Most of the aspects discussed in the previous sections depend on adequate tool support

for human-centered software development. In fact, most of the existing CASE tools

are either not used (Iivari, 1996) or simply fail to support practitioners in their own

development needs. This question is not new but certainly very timely, ACM Queue’s

“What’s on your hard drive?” and IEEE Software “Tools of the Trade” columns,

present testimony of how tools influence the work of practitioners to the point that

they hate or love their tools. Not surprisingly the case for user-centered CASE tools is

already on the agenda (Jarzabek and Huang, 2004).

We argue that bridging HCI and SE will not only require specific techniques, but

also developer-centric tools. Our own investigation about tool usage, based on a sur-

vey of 370 practitioners that answered questions about their tool usage and workstyle

transitions, presented some concluding results.

Regarding which tools are being used to perform interaction design activities, the

respondents, perhaps not surprisingly, clearly referred paper and pencil as the most

used tool. Figure 2.6 summarizes the results of tool usage.

Apart from analysis and modeling tools, the most frequent tools reported by practi-

tioners are low-tech and informal (paper and pencil, whiteboards, Post-It notes, etc.).

One could argue that this is clearly due to the processes underlying the software shops

surveyed. However, when asked about the organizational development process, only

roughly one third of the practitioners classified their process as agile or lightweight.

Even a crosstab between development process and tool usage shows that interface

builders are more used with formal development processes, such us waterfall and spi-

ral models (Campos and Nunes, 2007a).

It is interesting to note that Visual Interface Builders was ranked in 7 out of 12

classes of tools. This is surprising, since the survey specifically asked for the most

used tools for UI-related activities. We argue that these results contradict the idea,

behind the XP and agile methods, that practitioners urge to work with the low-level

artifacts like code and concrete widget layout.

However, we believe that these results should be considered with caution, thus our

research also investigated developer workstyles and workstyle transitions (Campos

and Nunes, 2005). This research was conducted by Pedro Campos who studied the

www.manaraa.com

WHAT DRIVES SOFTWARE DEVELOPMENT 21

Figure 2.5 Tool usage based on a survey of 370 practitioners (Campos and Nunes, 2007a)

way developers perform different activities and transition between them. The survey

asked developers to rate the frequency and cost of those transitions. By frequency

we meant “how many times [they] engage and transition between activities and work-

styles,” by cost we meant “how difficult [they] believe the transitions are.” For in-

stance, in UI-related activities the interaction and software engineers are frequently

interrupted by colleagues and emails or they are asked to change from low-tech card

sorting to high-tech UML modeling.

When confronted with several concrete scenarios of workstyle transitions, the re-

spondents were asked to rank them on a seven-point Likert scale. Figure 2.6 summa-

rizes some of those results.

The above results corroborate the empirical evidence that moving from

problem/solution and high/low detail are the two most frequent workstyle transitions

in interactive software development. We believe that these results contrast the

activities supported by the mainstream development tools and show there is a long

road of research and improvement to reach development-centric tools.

It is not our remit here to discuss the research on developer workstyles, our point

here is that the issues related to bridging SE and HCI are closely related to tool support

— research and practice need to go hand-to-hand on this. The TaskSketch examples

provided in this chapter to illustrate the bridging issues that drive software develop-

ment are already a step towards this direction. For instance, semantic drag-and-drop

of modeling constructs (activities in essential use cases and architectural elements)

illustrates how traceability could be supported in a new class of innovative developer-

centric tools. Together with the color-coding of modeling constructs (see Figs. 2.3

and 2.4) the tool can immediately help practitioners to take design decisions or per-

form complex prioritizing of development iterations.

www.manaraa.com

22 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 2.6 Workstyle transition frequency and cost (Campos and Nunes, 2007)

Another example of workstyle support was already illustrated in Figure 2.1. The

TaskSketch tool allows editing of task flows at three different — but synchronized —

views: the participatory view, which is a typical result of a participatory session with

end-users (obtained by manipulation of sticky notes); the use case narrative proposed

by Usage-Centered Design that can also be printed in index cards for stacking and

ordering by the different stakeholders; and the activity diagram which could include

additional details relevant to developers but that are not depicted in the other views.

Further research with logging mechanisms in TaskSketch shows the effectiveness and

implications of this feature. Figure 2.7 illustrates the distributed frequency of the

different views support in TaskSketch for the essential use cases.

Figure 2.7 Frequency distribution of the several views in TaskSketch (recorded through

automatic logging)

www.manaraa.com

WHAT DRIVES SOFTWARE DEVELOPMENT 23

These results carry important implications for the design of interaction design tools:

use cases and abstract prototype views exhibited the largest time share of usage, which

means more attention should be devoted to the UI supporting these views. Conversely,

if users spend most of the time modifying model elements (79% according to the

logging tool’s measurements), then it is clear that this activity is the most frequent,

and therefore it should be carefully supported by the design tool at stake.

The TaskSketch tool was developed as a research proof-of-concept used to test

and validate some ideas that quickly proved to be an effective instructive tool teach-

ing usage-centered development and some related key techniques. The fact that it is

essentially a research prototype supporting some innovative techniques that are not

widespread in the mainstream software development shops did not prevent that in just

8 months it had more than 3000 downloads. The “sister” tool CanonSketch reached

more than 2000 downloads in the same period, and they are both only available for the

MacOS X platform. Free versions of the tools, including video demos and examples,

are available at http://dme.uma.pt/tasksketch and http://dme.uma.
pt/canonsketch.

2.6 CONCLUSION

Modern software development methods (such as UP and XP) are currently promoting

some well-known UCD and HCI practices as a way to identify and manage require-

ments, drive and prioritize development and recognize architectural problems. In this

chapter we tried to look closer at the application of those UCD and HCI techniques in

SE. We argue that discussing those issues at the lifecycle level is a pointless exercise

— one that unfortunately has dominated the SE and HCI integration agenda for too

long. In order to promote the integration of both fields we need to work closer and

carefully examine how SE is using UCD and HCI techniques.

Here we presented the issue of driving software development from a UCD per-

spective. Both the UP and XP promote the UCD practice of involving users in the

design and evaluation of the system. However, careful inspection of how that prin-

ciple is achieved reveals important misconceptions. We illustrate those problems by

contrasting examples from the SE field with a new proposal that tries to selectively

incorporate HCI techniques in a way that is not disruptive with current SE practice.

The fact that the UML and UP promote use case modeling is not per se a solution

consistent with the UCD and HCI best practices. On the other hand, we cannot ignore

that UML is a de facto standard. Therefore we present an approach that tries to incor-

porate participatory design and essential task flows in a way that can be successfully

translated to UML constructs and efficiently managed by innovative developer-centric

tools. We have also discussed that XP user stories are misleading as an effective way to

model user requirements. Scenarios play an important but focused role in HCI that is

usually disastrous when applied indiscriminately as a general requirements discovery

technique. Moreover, natural language scenarios are particularly difficult to manage,

above all with iterative methods and tools that currently proliferate in software shops.

In this chapter we have also discussed why software architecture plays an important

role in modern SE. Although both UP and XP concentrate heavily on the architecture,

there are substantial differences in the way those approaches tackle and convey the

www.manaraa.com

24 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

conceptual system architecture. UP relies heavily on use cases to drive the architec-

ture, whereas XP promotes independent and concurrent creation of user stories and

the architecture spike. The specific examples provided here reflect that UP promotes

a system-centric view of the conceptual architecture that is clearly more complex and

inconsistent with HCI practice. Contrasting the UP approach does not provide separa-

tion of concerns between internal functionality and the user interface, lacks support for

multiple platforms and usually leads to more complex analysis models. In addition,

conventional use case descriptions don’t provide guidance towards extracting archi-

tectural significant classes from user requirements. At the other extreme, XP relies on

prototyping to test potential architectural problems. By combining refactoring tech-

niques, with frequent releases and user testing of story estimates, XP tries to tackle

architectural problems but does not provide a high-level view of the system architec-

ture. The main problem with XP’s approach is that there is no artifact that represents

the conceptual system architecture and the connection between that architecture and

the user tories. Relying on code and refactoring as the sole representation for the

system architecture is neglecting the importance of architecture at all.

Finally in this chapter we presented some ideas and research results about

developer-centric tool support. The examples provided in this chapter are drawn from

the TaskSketch tool, which illustrates our research efforts trying to understand how

developers perform interaction design, and what are the underlying workstyles.

Jointly with an extensive research survey we investigated developer styles of work,

their frequency and cost. The TaskSketch and CanonSketch tools support some key

activities that we believe are crucial to bridge SE and HCI. Of particular importance

is the support for multiple views, different abstraction levels and problem/solution

space transitions. The examples provided here simply confirm that bridging the gap

is not an easy task but both SE and HCI could benefit from CHISE efforts.

Acknowledgments

The author would like to thank Pedro Campos for the TaskSketch examples provided

in this chapter.

References

Agile Alliance (2001). Manifesto for agile software development. Technical report,

Agile Alliance. http://www.agilealliance.org.

Bass, L. and John, B. E. (2001). Supporting usability through software architecture.

Computer, 34(10):113–115.

Beck, K. (2000). Extreme Programming Explained: Embracing Change. Addison-

Wesley, Reading: MA.

Campos, P. and Nunes, N. J. (2005). Galactic dimensions: A unifying workstyle

model for user-centered design. In Costabile, M. F. and Paternò, F., editors,

Human-Computer Interaction - INTERACT 2005, IFIP TC13 International
Conference, Rome, Italy, September 12-16, 2005, Proceedings, volume 3585 of

Lecture Notes in Computer Science, pages 158–169. Springer.

www.manaraa.com

WHAT DRIVES SOFTWARE DEVELOPMENT 25

Campos, P. and Nunes, N. J. (2007a). Practitioner tools and workstyles for user inter-

face design. IEEE Software, 24(1):73–80.

Campos, P. and Nunes, N. J. (2007b). Towards Useful and Usable Interaction Design
Tools: CanonSketch, Interacting with Computers. Amsterdam: Elsevier.

Conallen, J. (1999). Building Web Applications with UML. Addison-Wesley, Reading:

MA.

Constantine, L. L. and Campos, P. (2005). Canonsketch and tasksketch: innovative

modeling tools for usage-centered design. In Johnson, J. and Gabriel, R. P., editors,

Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2005, October 16-
20, 2005, San Diego, CA, USA, pages 162–163. ACM Press.

Constantine, L. L. and Lockwood, L. A. D. (1999). Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered Design. Addison-Wesley,

Reading: MA.

Iivari, J. (1996). Why are case tools not used? Commun. ACM, 39(10):94–103.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development
Process. Addison Wesley, Reading: MA.

Jarzabek, S. and Huang, R. (2004). The case for user-centered case tools. Commun.
ACM, 41(8):93–99.

Kruchten, P. (1998). The Rational Unified Process — An Introduction.

Addison-Wesley, Reading: MA.

Myers, B. A. and Rosson, M. B. (1992). Survey on user interface programming. In

CHI ’92: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 195–202. ACM Press.

Nunes, N. J. and Cunha, J. F. (2000). Wisdom: A software engineering method for

small software development companies. IEEE Software, 17(5):113–119.

Nunes, N. J. and Cunha, J. F. (2001). Whitewater interactive system development with

object models. In Harmelen, M., editor, Object Modeling and User Interface De-
sign. Addison-Wesley, Reading: MA.

Seffah, A., Gulliksen, J., and Desmarais, M. C., editors (2005). Human-Centered Soft-
ware Engineering: Integrating Usability in the Development Process. Springer,

Boston.

Seffah, A. and Metzker, E. (2004). The obstacles and myths of usability and software

engineering. Commun. ACM, 47(12):71–76.

www.manaraa.com

3 HUMAN ACTIVITY MODELING:

TOWARD A PRAGMATIC INTEGRATION

OF ACTIVITY THEORY AND

USAGE-CENTERED DESIGN
Larry L. Constantine

Chief Scientist, Constantine & Lockwood, Ltd., IDSA

Director, Laboratory for Usage-centered Software Engineering

University of Madeira, Funchal, Portugal

Abstract. Human activity modeling is a systematic approach to organizing and rep-

resenting the contextual aspects of tool use that is both well-grounded in an accepted

theoretical framework and embedded within a proven design method. Activity the-

ory provides the vocabulary and conceptual framework for understanding the human

use of tools and other artifacts. Usage-centered design provides the methodological

scaffolding for applying activity theory in practice. In this chapter, activity theory

and usage-centered design are outlined and the connections between the two are high-

lighted. Simple extensions to the models of usage-centered design are introduced that

together succinctly model the salient and most essential features of the activities within

which tool use is embedded. Although not intended as a tutorial, examples of Activity

Maps, Activity Profiles, and Participation Maps are provided.

27

www.manaraa.com

28 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

3.1 INTRODUCTION

Activity theory is a way of describing and characterizing the structure of human ac-

tivity of all kinds. First introduced by Russian psychologists Rubinshtein, Leontiev,

and Vigotsky in the early part of the last century, activity theory has more recently

gained increasing attention among interaction designers and others in the human-

computer interaction and usability communities (see, for example, Gay and Hem-

brooke, 2004). Interest was given a significant boost when Donald Norman suggested

activity-theory and activity-centered design as antidotes to some of the putative ills

of “human-centered design” (Norman, 2005). Norman, who has been credited with

coining the phrase “user-centered design,” suggested that too much attention focused

on human users may be harmful, that to design better tools designers need to focus

not so much on users as on the activities in which users are engaged and the tasks they

seek to perform within those activities.

Although many researchers and practitioners claim to have used or been influenced

by activity theory in their work (see, for example, Nardi, 1996), it is often difficult to

trace precisely where or how the results have actually been shaped by activity theory.

In many cases, even detailed case studies report results that seem only distantly related,

if at all, to the use of activity theory.

Contributing to the lack of precise and traceable impact is that activity theory, de-

spite its name, is not truly a formal and proper theory. Better characterized as a con-

ceptual framework, activity theory comprises a collection of concepts and categories

for communicating about activity coupled to diverse assertions—posited but largely

untested—about the nature of human activity. Rich in vocabulary but somewhat lack-

ing in rigor, it is perhaps better described as a philosophy of analysis and design, a

philosophy that emphasizes understanding the larger context of activities within which

designed artifacts are and will be used.

For designers, the great potential of activity theory is to provide an organized and

consistent way to investigate, describe, and understand the larger context of activity

within which use of a software tool or other artifact is embedded. For this potential

to be fully realized, however, the somewhat vague formulations and expressions of

activity theory need to be made more precise and accessible.

Some attempts have been made to systematize and operationalize activity theory

for purposes of informing the design process. For example, the Activity Checklist

originally developed by Kaptalinin, Nardi, and Macaulay (1999) has recently been

transformed into a somewhat more precise form as an Activity Interview (Duignan,

Noble, and Biddle, 2006). Nevertheless, even its most ardent proponents acknowledge

the problems of putting activity theory into practice: “These general principles help

orient thought and research, but they are somewhat abstract when it comes to the actual

business of working on a design or performing an evaluation” (Kaptalinin, Nardi, and

Macaulay, 1999).

The purpose of this paper is to introduce human activity modeling, a systematic

approach to representing activities that is intended to make it easier for practicing de-

signers to capture essential insight and understanding about the context of activity and

to reflect this understanding in their designs. Specifically, human activity modeling

provides a link between activity theory and essential use cases (Constantine, 1995),

www.manaraa.com

HUMAN ACTIVITY MODELING 29

a widely used task modeling technique and one of the core models of usage-centered

design (Constantine and Lockwood, 1999). Usage-centered design itself has been

viewed as providing already established and effective methods for putting activity-

centered design into practice and for overcoming some of the stated shortcomings of

human-centered design (Norman, 2006).

The development of human activity modeling was spurred by recognized limita-

tions in both activity theory and usage-centered design. Activity theory has generated

little in the way of systematic modeling techniques or straightforward methods con-

necting activity to interaction design. Usage-centered design has, for its part, lacked

clear, concise constructs for representing the contextual or collective aspects of work.

In undertaking to overcome these weaknesses, the aim has been to create an easily

grasped modeling language anchored in a consistent, coherent vocabulary of well-

defined concepts that link task modeling based on essential use cases to the established

conceptual foundation of activity theory.

Human activity modeling is intended as a tool to capture and succinctly represent

the salient information regarding activities that is most relevant to interaction design.

The goal is first and foremost a practical design tool to serve practicing designers,

rather than a comprehensive framework for research or academic analysis. As such,

the focus is on pragmatics over rigor, on systematic rather than completely formal

techniques.

Before elaborating the technique of activity modeling, it is appropriate to briefly

review activity theory from a design perspective and to provide an overview of usage-

centered design.

3.2 ACTIVITY THEORY

Activity theory in its most elaborate and fully articulated forms can be rather daunting,

but the basic tenets are fairly straightforward. The essentials of activity theory can be

summarized by a couple of simple diagrams supported by brief explanations.

In a formulation that has been widely replicated, the structure of human activity is

represented schematically as in the diagram of Figure 3.1. The original perspective,

represented by the upper triangle in the diagram, was that human activity is performed

by agents (subject) motivated toward solution of a problem or by a purpose (object

or motive) mediated by tools (artifacts) within a transformational process yielding a

result (outcome). Engeström, Metitenen, and Punamäki (1999) elaborated this per-

spective by adding the elements in the bottom half of the diagram, implying that all

activity takes place in a social context (community) with differentiated responsibilities

(roles or division of labor) constrained by socio-cultural and procedural factors (rules).

Activity theory further characterizes human activity as hierarchical. As suggested

by Figure 3.2, activity can be understood at three levels of analysis: activity, action,

and operation. Activity consists of collections of actions directed toward goals that

contribute to or are related to the purpose of the activity. Actions in turn comprise

operations, conscious or non conscious, adapted to emerging conditions in service of

the goals of the actions.

Activity theory sees all human activity as mediated by tools and, whether signifi-

cantly or fortuitously, places tools at the very apex of the structure of activity. This is

www.manaraa.com

30 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 3.1 The structure of human activity (adapted from Engeström, 1999)

Figure 3.2 Hierarchical nature of activity (adapted from Engeström et al., 1999).

precisely the perspective of usage-centered design (Constantine and Lockwood, 1999).

For designed artifacts to be most effective as tools, they must be suited to the oper-

ational context in which they are actually used and deployed. Most importantly, this

requires that the design fit with the purpose(s) of the activities within which the use by

subjects takes place. At a more detailed level, it also requires that designed artifacts ef-

fectively support the combined actions by which these purposes are advanced. Third,

a well-designed artifact takes into account the community of participants, their roles,

and the rules regulating their activity. These are arguably among the most important

aspects of the immediate context of activity.

This brief synopsis does not, of course, do full justice to the richness of activity

theory. Elucidating the conflicts among activities and among competing goals are

considered to be essential to understanding how activity takes place and evolves. Ac-

tivity theory also posits that of repeated actions gradually become operationalized to

become automatic or partially automatic operations. For design purposes, it is useful

to highlight some additional aspects of activities that, while not being obvious from

the more compact formulations of activity theory, can have strong design implications.

In particular, activities take place in and over time, within a particular physical and so-

cial setting, and are performed in characteristic manners, styles, or patterns. These are

useful considerations for the designer to take into account in designing tools to support

activity.

www.manaraa.com

HUMAN ACTIVITY MODELING 31

3.3 USAGE-CENTERED DESIGN

Because usage-centered design is probably more widely known among software engi-

neers than in the HCI community (where it is sometimes confused with user-centered

design), a brief review is appropriate. More detailed descriptions can be found else-

where (Constantine and Lockwood, 1999; 2002)

Usage-centered design is a model-driven process for user interface and interaction

design that takes its name from its primary focus on use or usage rather than on users

per se. It is a systematic process for deriving a user interface design from a series

of interrelated abstract models representing user roles, tasks, and interface contents.

In this process, the content and organization of a user interface are derived more or

less directly from a fine-grained task model, which in turn is grounded in a well-

defined model of the relationships between users and the system being designed. What

distinguishes usage-centered design from most mainstream user-centered approaches

is a matter of emphasis and focus, but collectively these differences in degree can add

up to substantial and significant differences in practice and in results (Constantine,

2004).

While it is certainly common for designers and design processes to compile infor-

mation about users, tasks, and the content of user interfaces, usage-centered design

is distinguished by the high level of abstraction of its models and the straightforward

way in which these are interconnected. The most popular techniques for compiling and

conveying information about users, for instance, are, in contrast, concrete and realistic

rather than abstract; personas (Cooper and Reimann, 2003) and user profiles (Hackos

and Redish, 1998) are probably the best known examples. In the case of personas,

the pursuit of realism even includes construction of a hypothetical personal history,

background, personality, and frequently even augmentation with photographs (Pruitt

and Aldin, 2006). In contrast, usage-centered design carries salient information about

users in the highly condensed form of user roles representing abstract relationships

between users and the system being designed (Constantine, 2006).

Similarly, in user-centered design, tasks are often modeled using scenarios (Carroll,

1995), most commonly expressed in the form of plausible story narratives. In contrast,

usage-centered design models user tasks as use cases (Cockburn, 2001; Jacobson et al.,

1992), a construct originating in software engineering. A special form of use case, the

so-called task case or essential use case (Constantine, 1994, 1995), was invented to

serve the needs of user interface and interaction design by distilling interaction to its

simplest, abstract essence. Task cases became the core of the model-driven process

that is now known as usage-centered design.

Most designers rely heavily on paper prototypes, mockups, or other more or less

realistic sketches or drawings of actual user interfaces (Snyder, 2003) to express and

develop user interface designs. Usage-centered design relies on abstract prototypes

to model the organization and functional content of user interfaces without regard to

details of appearance or behavior (Constantine, 1998, 2003).

The use of abstraction has many advantages for designers. It makes it easier to

defer decisions and avoid premature preoccupation with details. It helps focus the

designer’s attention on essentials, promoting resolution of large-scale or architectural

issues before becoming immersed in low-level details. Experience has also shown

www.manaraa.com

32 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

that such abstract models encourage inventive, creative thinking about solutions to

design problems. Most crucially, highly abstract models allow complex problems to

be described more succinctly without sacrificing critical information.

Because of their connection with activity theory, the core models of user roles and

task cases will be described in somewhat greater detail.

3.3.1 User Roles

Users who interact with a system are referred to as actors, a term borrowed from

software engineering. Actors play roles. A user role is an abstraction representing

a relationship between users and a system. In its simplest form, a role can be de-

scribed by the context in which it is performed, the characteristic manner in which it

is performed, and by the evident design criteria for effective support of performance

of the role (Constantine, 2006). An example is shown below for a user working in

the ticketing window reserved for “today’s performances only” at a performing arts

center.

R01 - Current-Sales-and-Ticketing Role

context (of role performance): isolated in booth, likely facing queue of customers;

final step in performance promotion and sales

characteristics (of role performance): relatively simple task performed repeatedly

with some training, prior experience likely; performed under some time pressure,

which increases as show time approaches

criteria (for support of role performance): simplified, highly efficient interaction;

foolproof means of identifying customer, guarantee that all the right tickets are dis-

pensed and received by the customer

A typical application will involve a number of distinct roles representing the various

relationships a user can assume in interaction with the application. Roles can, of

course, be shared by any number of different occupants or incumbents, and a given

user may occupy different roles at different times, even sometimes shifting rapidly

between roles. For example, a visitor to a Web site may begin in the role of Indifferent-

Curious-Information-Seeker and switch to the role of Engaged-Potential-Purchaser.

Usage-centered design models roles rather than users for two reasons. First, the

characteristics of the role, the relationship to the system, have a more immediate and

direct relevance for interaction design than do characteristics of the person playing

the role. Second, the relationship to any given system represents a small subset of

all possible aspects of the user. Interaction with the system takes place over a channel

with relatively limited bandwidth which is restricted to a small subset of user behaviors

that take place in specific settings. Because of its narrow focus on the most salient

issues, a user role model can thus be substantially more compact than many alternative

user models (Constantine, 2006). This simplicity has contributed to the popularity of

usage-centered design for the streamlined and accelerated processes known as agile

development (Constantine, 2002; Constantine and Lockwood, 2002; Patton, 2002).

www.manaraa.com

HUMAN ACTIVITY MODELING 33

3.3.2 Task Cases

A task case represents a single, discrete user intention in interaction with a system that

is complete and meaningful to a user in some role. A task case is a specially structured

form of a use case, one that is expressed in so-called essential form (Constantine,

1995; McMenamin and Palmer, 1984), that is, abstract, simplified, and independent of

assumptions about technology or implementation. Task cases are written as an abstract

dialog representing user intentions and system responsibilities. This form focuses on

the essence of a task stripped of assumptions about how it might be performed with

or supported by a particular user interface design. For example, a task supporting the

Current-Sales-and-Ticketing Role described earlier might be:

T01 - Issuing-Held-Ticket(s) for Performance(s)

USER INTENTIONS SYSTEM RESPONSIBILITIES

1. request customer identification

2. provide customer identification 3. provide confirming details

4. confirm by selection 5. print tickets with in-process and

completion notification

Task cases are typically small and focused on a highly specific user goal, yielding a

fine-grained model of user activity. A complete task model comprises a collection of

such task cases interrelated in a variety of ways. For example, a task case can include

or make use of other task cases to form more complex combinations, a task case can

be extended by others that alter or interrupt its performance, or a task case can express

a specialized variation of another.

More complex scenarios or workflow can be expressed by constructing composite

task cases that include (by reference) any number of other task cases in the structured

narrative. These so-called workflow task cases can be useful for modeling relatively

predictable, orderly tasks that are well understood in detail but are not well suited to

expressing combinations of individual tasks that may be performed in many different,

largely unpredictable ways.

3.4 TOWARD INTEGRATION

Activity theory and usage-centered design are clearly connected at more than one

point. The participation of actors in activities and the hierarchical nature of perfor-

mance of activities represent the most important points of intersection. Activity theory

provides a coherent way of understanding and modeling actors as tool users engaged

with other participants and artifacts.

Perhaps most importantly, activities constitute an elegant scheme for aggregation

of task cases into larger, loosely structured collections related by common purposes

rather than by explicit or detailed interconnections. This approach to aggregation of

task cases is particularly appealing because it is not an ad hoc modeling mechanism

introduced to solve a problem in task modeling but comes already embedded in a

larger body of knowledge and insight about human action.

The integration of activity theory with usage-centered design is less a matter of

adding new concepts to the method than one of providing a stronger and more co-

www.manaraa.com

34 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

herent organization to existing ones. The foundations of usage-centered design rest

firmly on the bedrock of activity and action, but in practice over time environment

and context became the backdrop for a focus on tasks as central to a model-driven

design process. As originally conceived, operational context was represented by an

operational model, a loosely bound collection of so-called operational profiles: the

incumbent profile, proficiency profile, interaction profile, information profile, envi-

ronment profile, and others (Constantine and Lockwood, 1999). Gradually, some of

this information migrated into the user role model, but otherwise it remained largely

unconnected with the other models of usage-centered design. Activity theory offers a

single, simple framework capable of tying all this information together coherently.

3.4.1 Vocabulary

Both activity theory and usage-centered design have established vocabularies of spe-

cialized terminology. Unfortunately, the terminology is incompatible and can be con-

fusing at points. For example, activity theory typically uses the term object, rather

than objective, to refer to the motive for or purpose of an activity. Although semanti-

cally correct, this less common usage conflicts with the software engineering lexicon,

in which object is a software component defined by attributes and operations.

In building a bridge between activity theory and usage-centered design, every at-

tempt has been made to keep original vocabulary intact as much as possible while

avoiding confusion and conflict. One way to smooth the linguistic integration is by al-

lowing alternative terms for the same concept used from different perspectives. Thus

the three levels of analysis can still be referred to in the traditional way as activity,

action, and operation when speaking generically, but when focusing specifically on

interactive activity, that is, activity in interaction with a system being designed or

analyzed, the three levels are referred to as activity, task, and operation to maintain

consistency with usage-centered design.

For design purposes it is also important to distinguish participants who actually

interact directly with the user interface from those who are not engaged with the sys-

tem or whose interaction is indirect, that is, mediated by other participants who do

have direct contact with the user interface. Participants who are direct users are called

actors, the well-established term in both usage-centered design and software engineer-

ing, while other participants are referred to as players. Clearly, whether a participant

(subject) is an actor (user participant) or a player (other participant) can depend on the

choice of the system of reference (the system to be designed or analyzed), the defined

boundary of that system, and the activity frame of reference. For example, a customer

on the telephone is an actor (direct user) with respect to the voice menu for initial

contact but a player (indirect, mediated user) when speaking with a sales agent who

has direct access to an ordering system. Players can, of course, be actors with respect

to other systems.

3.4.2 Notation

The purpose of a notation is to enable the construction of compact representations

that serve as repositories of insight and understanding and that facilitate rapid com-

www.manaraa.com

HUMAN ACTIVITY MODELING 35

prehension, clear and efficient communication, and detailed analysis. The notation

introduced here for human activity modeling is an extension of the notation long used

in usage-centered design, which, in turn, is related to the Unified Modeling Language

(UML) widely used in software engineering (Fowler and Scott, 1997). The objective is

a simple notation that expresses clear distinctions where needed with minimal elabora-

tions or additions. The notation for human activity modeling summarized in Table 3.1

adds four new symbols for activities, actions, artifacts, and non actor participants to

the established notation already employed in usage-centered design.

It is important to keep in mind that these models are being introduced to maximize

utility and efficiency in representing activity context for interaction design purposes

rather than for software engineering. The notation has not, therefore, been forced to

fit, however awkwardly, within the constraints of UML at the expense of facile expres-

sion. An artifact, for example, could be argued to be an object in the object-oriented

software engineering sense and, therefore, could be represented by the extant (and

much overworked) UML symbol for an object. However, an artifact is not a software

object but an actual real-world physical entity of interest not for its modeling in soft-

ware but for its part in some human activity. Making all objects, whether modeled in

software or existing in the real world, look alike does not serve the purpose of facile

expression and easy comprehension.

3.5 HUMAN ACTIVITY MODELING

In as much as usage-centered design is an already proven design method that has

been widely and successfully practiced (see, for example, Constantine and Lockwood,

2002; Strope, 2003; Windl, 2002) for more than a decade, the objective in introducing

systematic modeling of human activity is refinement rather than wholesale replace-

ment. In particular, every effort has been made to add value without sacrificing the

economy of expression of the established usage-centered models.

Human activity modeling is incorporated into usage-centered design through a

three-part Activity Model consisting of an Activity Context Model, a Participation

Model, and a Performance Model.

The Activity Context Model, which is completely new, defines and describes

human activities and their salient interrelationships.

The Participation Model is a straightforward elaboration of the User Role Model

that embeds User Roles explicitly within the context of the activities within

which they are played.

The Performance Model is a simple elaboration of a Task Model to incorporate

actions in relation to other participants and artifacts and to connect task cases

explicitly to activities.

The Activity Context Model itself consists of two parts: an Activity Map, which iden-

tifies activities of interest and their interrelationships, and a collection of Activity Pro-

files describing the salient aspects of the relevant activities.

www.manaraa.com

36 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 3.1 Extended usage-centered design notation for activity modeling

Symbol Name Description

actor, user actor activity participant interacting with the sys-

tem of reference

role, user role relationship between an actor and the sys-

tem of reference

system actor non human system (software or hardware)

interacting with the system of reference

player* activity participant not interacting with the

system of reference (but often an actor with

other systems)

artifact, tool* any artifact employed within an activity

activity* collection of actions or tasks undertaken

for some purpose

task, task case action by an actor in interaction with the

system of reference for some goal within

an activity

action* action by a player for some goal within an

activity

*New notation introduced for activity modeling.

www.manaraa.com

HUMAN ACTIVITY MODELING 37

3.5.1 Activity Map

An Activity Map represents activities relevant to the design problem and the interrela-

tionships among them. The most relevant are, of course, those activities that include

interaction with the system of reference, which are referred to as proximate activi-

ties. Proximate activities define the immediate context of use, how individual tasks

are combined into larger, more complex, interdependent collections. For example,

telephone ticket sales is an activity that may involve a complex and changing mix

of answering simple questions, helping customers find events of possible interest, re-

sponding to requests for specific tickets, taking credit card information, and the like.

Activities can contain or include other activities. Thus, for example, the larger ac-

tivity of telephone sales might be clarified by breaking it down into two more focused

activities: ticket selling and inquiry handling.

Even activities that do not involve interaction with the system of reference may

in some cases impact a design and be relevant for defining and understanding the

context of use. If, for example, actors are involved in activities with other participants

that compete for their time and attention, this has implications for presentation and

interaction design. In such cases, the ability to suspend or interrupt interaction at any

arbitrary point might be required, and presentation design may need to make it easy

for actors to recognize where they are and where they left off in a process.

Activities that are connected in time can be related in a number of different ways.

They may be either independent or coordinated in some way. They may be concurrent

or consecutive. If concurrent, they may be coordinated (or synchronized), indepen-

dent, or interleaved, that is, alternated. (This last relationship is particularly common

because a single actor can seldom engage in more than one activity at a time, which

results in otherwise independent activities becoming coordinated in time.) If consecu-

tive, activities may or may not overlap in time. An activity can compete with another

activity because it shares common participants or resources. More indirectly, an activ-

ity can be affected by an adjacent activity with which it has no relationship other than

both activities take place within the same setting.

The most commonly meaningful relationships among activities in an Activity Map

are listed in Table 3.2. This is not intended as a complete listing but only to offer

examples of the kinds of relationships that have proved useful for modeling real-world

problems.

In considering whether to include an activity in an activity model or to define a

relationship between activities, the sole issue is relevance: Does it make a demonstra-

ble difference or have an arguable impact on the design? The objective is not to be

exhaustive or all encompassing but to model what matters. In general, activities can

be rank ordered on the relevance for interaction design. From most relevant to least,

these are:

1. Proximate activities (the immediate activity context within which use occurs)

2. Competing activities also involving the same actor(s)

3. Competing activities involving shared resources in common with proximate ac-

tivities

www.manaraa.com

38 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

4. Adjacent activities in the same setting but otherwise unrelated to proximate ac-

tivities

Activities are represented in an Activity Map by the block shape shown in Table 3.1.

A line or arrow connecting one activity to another represents a relationship. Rela-

tionships can be labeled with qualifiers to specify the relationship more precisely. An

example of an Activity Map using this notation is shown in Figure 3.3. This map

represents some of the core activities for a retail sales context within the appliance

department of a large retailer. As seen here, braces (curly brackets) can be freely used

to visually simplify representation of relationships.

Table 3.2 Relationships between activities

Relationship Qualifier Explanation*
contains [includes] activity is composed of other subactivities

coordinated [synchronized] activities are coordinated/synchronized by

some means

concurrent

synchronized

unsynchronized

interleaved

activities occur over common time span, not further quali-

fied

[coordinated]

independent, concurrent but not coordinated

alternating

consecutive

precedes

overlaps

sequential activities, not further qualified

strictly sequential

activity finishes after another starts

competing

common participants

shared artifacts

activities conflict or interfere, not further qualified

participant(s) (optionally identified) overlap

some resources (optionally identified) are shared

adjacent activities occur within same setting (place and time)

* Alternate terms are shown in brackets.

In addition to the qualifiers listed in Table 3.2, other terms or descriptions appro-

priate to the context can be used as needed. For example, the flow of information,

participants, or artifacts between activities can be modeled where known and where

relevant using small arrows running alongside the line or arrow for the relationship.

An Activity Map can also be expanded into a combined Activity-Task Map that in-

www.manaraa.com

HUMAN ACTIVITY MODELING 39

Figure 3.3 Example of an Activity Map in a retail sales context

cludes the aggregation of task cases into activities. An example of this can be found

in Figure 3.6, to be discussed later.

3.5.2 Activity Profiles

For purposes of informing interaction design, activities are described by Activity Pro-

files. An Activity Profile is not intended to capture in fullest detail everything known

or knowable about an activity but rather to organize in compact form the salient aspects

of an activity that are most likely to be relevant to shaping the user interface design.

This condensed formulation is organized under four easily remembered headings: Pur-

pose, Place and Time, Participation, and Performance. A fifth heading, Product, is not,

strictly speaking, part of the activity description but serves as a holding place for any

evident design implications that follow from the understanding of the activity. An

Activity Profile can, of course, be augmented by additional narrative description or

supporting documentation or models.

Purpose refers to the motives or objectives for the activity, what it is all about. An ac-

tivity can have more than one purpose and the purpose may in some cases be different

for different participants. The purpose of a soccer game may be different for players

on the field and for fans in the stands, for example. Purpose may also differ depending

on whether an internal or external view is taken.

Place and Time (the setting) refers to where, when, and under what conditions the

activity takes place, which can include both the physical and the social setting of the

activity as well as the duration, schedule, frequency or other temporal aspects of the

performance. The setting within which activity takes place is not always known or

easily described. On-line shopping, for example, might take place within an office

cubicle, in the living room of a home, or in a WiFi-equipped coffee shop. Such vari-

ations in the setting can be included if they are of significance for design and can be

described at an appropriate level.

Participation refers to those engaged in the activity and the artifacts with which they

are involved. Participants include actors engaged with the system of reference along

with the roles they play as well as other players not engaged with the system. Ar-

tifacts include the physical and conceptual tools employed in the activity, including

information sources, references, and other resources. Relationships and interactions

among participants and between participants and artifacts as well as the division of

responsibilities among participants also fall under this rubric. Participation can also

be defined by reference to a Participation Map (see below).

www.manaraa.com

40 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Performance refers to the characteristic manner or style in which the activity is per-

formed including how it might be coordinated with or otherwise related to other iden-

tified activities. Included under this heading are the rules, formal or informal, that

shape and govern the performance of the activity. Relationships with other activities

can also be defined by reference to an Activity Map.

3.5.3 Participation Map

One of the most straightforward ways to model human activity is through a simple

map of the “playing field,” a representation of the participants and their relationships

with each other and with the various artifacts involved in the activity. Such a Partici-

pation Map, as it is called, gives a quick overview of the context within which system

use takes place. For design purposes, it is useful to distinguish participants who are

engaged in interaction with the system of reference, the tool being designed, from

other participants. Carrying over the already established terminology, the former are

referred to as user actors, or more simply, actors. Other systems that interact with the

system of reference are called system actors. The term player is introduced to refer to

all other participants.

The Participation Map takes the form of a simple diagram, such as the one shown

in Figure 3.4. The notation employs simple but distinctive iconic representations to

distinguish actors, roles, players, system actors, and artifacts. Interconnecting lines

identify the interrelationships and can be decorated to represent the flow of information

or material.

The Participation Map would typically include only participants and artifacts hav-

ing a salient connection with actors (or roles) within proximate activities, either di-

rectly or as mediated by artifacts. Where the information is relevant, the Participation

Map can be supplemented by more detailed descriptions of artifacts or of participants.

The system-centered Participation Map shown in Figure 3.4 has proved the most

versatile as it compactly represents an overview of the context of use for the system of

reference. As the particular roles and artifacts involved may vary from one activity to

another, this information when deemed important can be incorporated in several ways,

either by grouping participants and artifacts or by footnoting.

System Actors and Artifacts (tools, resources) are, of course, closely related and

can be easily confused. System Actors, like User Actors, interact with the system of

reference but unlike Artifacts, they are not directly used by User Actors. In Figure 3.4,

for example, the credit card network interacts with the sales support system but, unlike

the telephone, is not itself a tool used directly by any of the actors or players. In

some cases, a system might be modeled either way, depending on the purpose and the

context of the model.

3.5.4 Role Profiles

From an activity theory perspective, User Roles are played by Actors within activities.

User Roles are connected to activity theory by modifying the Role Profile to include

information about activities. The content of this revised Role Profile is organized

under three headings: Activity, Background, and Characteristics.

www.manaraa.com

HUMAN ACTIVITY MODELING 41

Figure 3.4 Example of Participation Map for retail selling situation

Activity refers, of course, to the activity within which the role is played. If the activity

is defined elsewhere by an Activity Profile, then it can be referred to by name. Other-

wise it is briefly described in terms of purpose, place (physical and social context) and

time, and participation, including salient artifacts.

Background refers to the background characteristics of the performers of the role in

terms of experience, training, education, system knowledge and domain knowledge,

distribution of performance skills, and orientation or attitudes of performers

Characteristics refers to performance characteristics, such as frequency, regularity, in-

tensity, complexity, and predictability of performance. In some cases this may overlap

with or repeat aspects of the Activity Profile, particularly if there is only one Role for

a single Actor in the activity.

A fourth rubric, Design, serves as a holding place for evident design implications

for effective support of the role.

An activity-centered Role Profile for the Current-Sales-and-Ticketing Role resem-

bles the description given earlier but places greater emphasis on the larger context

within which the role is played:

R01 - Current-Sales-and-Ticketing Role

Activity (in which role is performed): selling and delivering tickets for today’s events;

part of performing arts promotion, sales, and presentation (purpose: sell and deliver

tickets efficiently and accurately; place: isolated in booth outside main entrance, likely

facing queue of customers; time: before show time, final step in activity; participants:

seller, customer, queued customers, milling crowd, supervisor; artifacts: ticketing sys-

tem, tickets in ticket printer, phone to supervisor)

credit card netcredit card net

intranetintranetintranet

inventory managementinventory management

warehouse fulfillmentwarehouse fulfillment

telephonetelephone

sellersellerseller

query handlerquery handlerquery handler

customerscustomerscustomers callerscallerscallers

sales supportsales supportsales support

app
rov

al

app
rov

alcha
rge

 re
qu

est

cha
rge

 re
qu

est

messagemessage

check/update
check/update

resultsresults

pick order

pick order

confirmation

confirmation

appliancesappliancesappliances

department managerdepartment managerdepartment manager

sales affiliatesales affiliatesales affiliate

supervise
s

www.manaraa.com

42 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Background (of role performers): some training and experience expected, may or

may not have domain (performing arts) knowledge

Characteristics (of role performance): relatively simple task performed repeatedly

under some pressure, increasing as show time approaches; governed by business rules

for normal sales and exception handling as well as informal rules of courtesy and

customer focus

Design (implications for support of role performance): needs simplified, highly effi-

cient interaction, foolproof means of identifying customer, guarantee that all the right

tickets dispensed and received

It is worth emphasizing again that the goal in activity modeling is efficient expres-

sion, as represented in this Role Profile, not comprehensive description.

3.5.5 Performance Modeling

The detailed performance of human activities is represented by a performance model,

which, like the Context Model and the Participation Model, consists of two parts: a

Performance Map representing the aggregation of individual tasks and actions into

Activities, and Process descriptions that detail the operations within tasks.

Task cases (essential use cases) as employed in usage-centered design represent the

second level of the activity hierarchy. A task model based on task cases provides a

fine-grained view of user intentions and interactions within an activity. The traditional

task model is extended to integrate with the activity model in two ways: by connecting

tasks to the activities within which they are embedded and by elaborating the task

model to incorporate non interactive actions. In this context, actions refer to goal-

directed interactions among actors or players and between them and artifacts other

than the system of reference. Actions are represented by a distinct symbol (the barred

ellipse seen in Table 3.1), a variation of the symbol already generally used to represent

task cases.

The Performance Map, a model used to represent the interrelationships among task

cases in usage-centered design, can be extended to incorporate activities and actions.

For complex problems, however, a single diagram combining activities, tasks, and ac-

tions along with lines representing all their relationships can become too complicated

visually. The combined model can be simplified by omitting the relationships among

tasks and actions to focus on the aggregation into activities, which in many cases is

the primary interest. An example of such a Performance Map is shown in Figure 3.5.

The aggregation of tasks and actions into activities can also be easily expressed in

matrix form, with activities as columns and actions and tasks as rows. The choice of

representation depends on the complexity of the problem and the goals of modeling.

The narrative body that defines a task case in detail can also, in turn, be extended

to include, as appropriate, references to external actions involving other players. For

example, in the ticket selling application, the interaction with the customer can be

incorporated into the narrative as shown in the task case below. An external action

is indicated by bracketing with vertical bars (as in the barred ellipse symbol), as for

operations 2, 5, and 8 in the example below. Named actions, like tasks, are identified

with underlined names. The former can be defined further with their own narratives

or other description where warranted by the complexity and relevance of the action.

www.manaraa.com

HUMAN ACTIVITY MODELING 43

Figure 3.5 Example of partial Activity-Task Map for retail selling

Whether such attention to detail is worthwhile for a particular problem depends largely

on whether there are potential interface design implications.

T01 - Issuing-Held-Ticket(s) for Performance(s)

USER INTENTIONS SYSTEM RESPONSIBILITIES
1. request customer identification

2. |getting identification from customer|
3. provide customer identification 4. provide confirming details

5. |confirming details with customer|
6. confirm by selection 7. print tickets with in-process and com-

pletion notification

8. |give tickets to customer|
9. confirm delivery 10. note as delivered

3.6 DESIGN IMPLICATIONS

The manifest design implications regarding activities and the roles played within them

are captured and carried as part of the Activity Profiles and Role Profiles. Such im-

plications, which are almost invariably idiosyncratic to the particular problem, can be

expanded or altered whenever the need arises. In many cases, design implications will

be clear when profiles are first constructed, but in others the significance for design

may not become apparent until sometime later in the design and development process.

floor
selling
floor
selling

answering
telephone
answering
telephone

organizing
stock
organizing
stock

interleavedinterleavedopeningopening closingclosingprecedesprecedes precedesprecedes

checking inventorychecking inventory

getting descriptiongetting description

querying affiliated storequerying affiliated store

getting manualgetting manualentering paymententering payment

arranging deliveryarranging delivery

verifying priceverifying price

reporting problem/errorreporting problem/erroroverriding termsoverriding terms

extending warrantyextending warranty
schmoozing customersschmoozing customersschmoozing customers

demo-ingappliancesdemo-ingappliancesdemo-ingappliances

fielding questionsfielding questionsfielding questions fielding questionsfielding questionsfielding questions

www.manaraa.com

44 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Some general implications of activity modeling have become clear from use so far.

The activities within which task cases are embedded form a powerful and crucial guide

to designing a sound architecture for the user interface. All the tasks that constitute

a given activity need to be supported through closely connected interaction contexts

within the user interface. Tasks that are part of a common activity are likely to be

used together or in more or less closely coupled yet often unpredictable ways. If the

features that enable the performance of those tasks are widely separated on the user

interface, then the system will be both harder to use and more difficult to learn in the

first place. A more fully elaborated activity model, in which the finer structure of

activities is expressed through a complete Activity Map, will provide more detailed

guidance for the interface architecture. The relationships among activities can also be

helpful in organizing the user interface. Sequential activities can be supported by dis-

crete facilities of the user interface presented separately to the user, while concurrent

activities need integrated facilities.

As noted earlier, not all activities are important to model and factor into design

considerations. Proximate activities that include actor interaction with the system of

reference are apt to be most relevant, while adjacent activities that merely share the

same setting are much less likely to be relevant.

In usage-centered design, the contents of the user interface derive more or

less directly from the task model. Clusters of closely related tasks are initially

assumed to require support through features in a shared interaction context, or

a small set of closely connected ones. When externally directed actions are

added into the mix, the derivation can change. The action-task formulation of

Issuing Held Tickets for Performances shown above, for example, highlights the

close connection between what identification information is requested by the system

on the one hand and the exchange between the ticket agent actor and the customer

player on the other, which is also true of the presentation of confirming details

and the exchange to confirm with the customer. Planning or scripting the external

exchanges and organizing the presentation design to correspond can contribute to

efficient use and conformance to business rules. For example, business policies may

favor using a purchase confirmation number because it uniquely identifies a particular

set of tickets for a particular customer even though the customer is more likely to

have other forms of identification or confirmation. This suggests a design that leads

with a field for confirmation number coupled with a script that asks if the customer

knows the confirmation number.

3.7 PROCESS IMPLICATIONS

The modest elaboration of usage-centered design to accommodate activity modeling

does not radically alter the process. In overview, the process begins with a focus on

users and other participants to clarify the immediate activity context. Actors, roles,

players (other participants), and artifacts are identified and characterized, along with

system actors. The immediate context is modeled by the Participation Map and Role

Profiles. On the basis of those models, activities and their constituent actions and tasks

are elaborated as an integrated model that includes an Activity-Task Map and Task

Cases. The Activity Model guides the development of a Navigation Map to express

www.manaraa.com

HUMAN ACTIVITY MODELING 45

the overall architecture of the user interface and the derivation of Abstract Prototypes

expressing the content and organization of the parts of the user interface. Details of

the presentation and interaction design are then determined to complete the design.

In outline, the logic of this process is represented in Figure 3.6. It conveniently

breaks down into two focuses: activity modeling and solution modeling. The former

expresses the problem from an activity-centered perspective while the latter expresses

the design that follows from expression of the problem. The entire process is model-

driven and linked end-to-end by common threads captured in the models. Thus, any

given feature of the user interface design can be simply traced to some part of the

abstract prototype that derived directly from some element of the task cases that, in

turn, support some one or more user roles played by actors participating in modeled

activities.

Although the logical connections suggest a straightforward sequential process, in

practice the process is iterative and much more nonlinear. In particular, the models

under activity modeling, owing to their strong interdependence, are often developed

more or less concurrently, with the focus of attention repeatedly shifting among them.

3.8 APPLICATION

The purpose here is to provide a worked out example of human activity modeling for a

real-world problem. The problem chosen for illustration is the design of the UInspect

system, a software tool to support collaborative usability inspections (Constantine,

2005; Lockwood and Constantine, 2003), particularly the recording of defects during

an inspection. A collaborative usability inspection is a structured review organized to

identify usability defects in a design, prototype, or working system. Under the lead-

ership of a Lead Reviewer, a User or User Surrogate following an inspection scenario

collaborates with other Reviewers to identify usability problems according to a strict

protocol. Each of the participants has an assigned role and responsibilities governed

by explicit inspection rules. (For more details on collaborative inspections and the

rules governing them, see Constantine, 2005; Lockwood and Constantine, 2003)

Activity Profile: Collaborative Usability Inspection Session

Purpose: to efficiently and effectively locate, describe, and categorize usability de-

fects in a design, prototype, or working system

Place and Time: typically in a conference room or other isolated setting at a scheduled

time, lasting 1–3 hours, typically under project schedule pressure; social setting mixes

insiders (designers and developers) with outsiders (users or user surrogates, usability

experts)

Participation: typically 6–12 people, 1–3 end-users or user surrogates, Lead Re-

viewer, Inspection Recorder, Reviewers (designers or developers), System Driver; op-

tional Continuity Reviewer, Usability Specialist; see references for role responsibili-

ties and rules of conduct (summarized by Lead Reviewer, optionally on poster). Arti-

facts include: design, prototype, or system being inspected; inspection scenario; UIn-

spect tool with inspection record; optional projector or large-screen monitor, equip-

ment to run prototype or system being inspected

Performance: intense, sometimes tense interaction, tending to come in bursts; pro-

cess is carefully orchestrated and divided into distinct phases; location and multipart

www.manaraa.com

46 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

descriptions for as many as 100 defects per hour must be recorded accurately and in

sufficient detail to support later review and correction; Recorder role particularly pres-

sured; Lead Reviewer important to maintaining focus, preventing unproductive debate

and discussion

Figure 3.6 Logical overview of usage-centered design with activity modeling

The system-centered Participation Map in Figure 3.7 provides an overview of the

activity context. The immediate context of the inspection proper is enclosed in the

dashed line. This highlights the fact that all players are involved in identifying de-

fects but that all defects flow through the inspection recorder. The unlabeled “cou-

ples” shown on some relationships represent the dominant flow of information. In

this model, the same actor, the Recorder, is shown as playing three distinct roles:

Prep/Configuring, Session Recording, and Record Refining. The first and last of these

are associated with distinct activities represented in the Activity-Task Map of Fig-

ure 3.8, which shows the relationships among the activities connected with conducting

a collaborative usability inspection, including both preparation and follow-up activi-

ties. For simplicity, this combined model shows the aggregation of tasks and actions

into activities but not the relationships among actions and interactive tasks.

The pivotal role of session recorder can be described with a Role Profile.

R02 - Session-Recording Role

Activity (in which role is performed): Collaborative Usability Inspection Session.

Purpose: quickly, accurately, and efficiently capture usability defects identified

Background (of role performers): trained and educated technical professional, proba-

bly member of design/development group (not non-technical or administrative); some

familiarity with UInspect system and object being inspected (at least from Preparing

for Inspection activity); some knowledge of basic user interface and usability concepts

required, familiarity with inspection process desirable; role may be played repeatedly

but infrequently, expert performance in using the UInspect tool is unlikely

Characteristics (of role performance): multipart repetitive recording task requiring

rapid interaction and quick judgment under some pressure; close coordination with

Lead Reviewer; competing attention between verbal reports, comments, and recording

activity

NAVIGATION
MAP

1. Asdhfasdfyu
2. Wertwrtbzc
3. Ouiaaero

Step2Step1

Behavior

PARTICIPATIONCONTEXT CONTENT DESIGN

TASK

CASE

ABSTRACT
PROTOTYPE

PERFORMANCE
MAP

ACTIVITY MODELING SOLUTION MODELING

ROLE

PERFORMANCE

ACTIVITY
MAP

PARTICIPATION MAP NAVIGATION
MAP

1. Asdhfasdfyu
2. Wertwrtbzc
3. Ouiaaero

Step2Step1

Behavior

1. Asdhfasdfyu
2. Wertwrtbzc
3. Ouiaaero

Step2Step1 Step2Step1

Behavior

PARTICIPATIONCONTEXT CONTENT DESIGN

TASK

CASE

ABSTRACT
PROTOTYPE

PERFORMANCE
MAP

ACTIVITY MODELING SOLUTION MODELING

ROLE

PERFORMANCE

ACTIVITY
MAP

PARTICIPATION MAP

www.manaraa.com

HUMAN ACTIVITY MODELING 47

Design (implications for support of role performance): speed and accuracy are fore-

most requiring maximum visibility of recording options and categories, simplified

means for marking screenshots or design images; need ability to quickly navigate for-

ward and back or to specific defect record, UI image, or scenario step; system must

allow incomplete and blank entries with ability to edit on the fly

Figure 3.7 System-centered Participation Map for collaborative usability inspections

3.9 DISCUSSION

The integration provided by human activity modeling is unlikely to appeal to every-

one. Longstanding activity theorists may disdain the distillation of an elaborate body

of discourse into a few simple profiles and diagrams. Designers already working com-

fortably within a usage-centered perspective may object to complicating a straight-

forward process with additional models or elaborations of current models. Designers

immersed in more elaborate ethnographic approaches to analysis and design may con-

sider the models of human activity modeling too spare and simplistic.

UInspectUInspect

paper prototype,
simulation, software
paper prototype,
simulation, software

reviewersreviewers

RecorderRecorder

Lead ReviewerLead Reviewer

user(s)user(s)

DriverDriver

R03. Record RefiningR03. Record Refining

R02. Session
Recording

R02. Session
Recording

defect analyzingdefect analyzing

defect trackingdefect tracking

redesigningredesigning

rewritingrewriting

R01. Prep/ConfiguringR01. Prep/Configuring

DefectTracking
System

DefectTracking
System

coordinate

guides

inspection
rules
inspection
rules

inspection
scenario

inspection
scenario

Inspection
Record

Inspection
Record

follows

guides

defectsdefects

defectsdefects

de
fe
cts

de
fe
cts

defect descriptions
defect descriptions

operates or
simulates

guides

def
ect

s
def

ect
s

www.manaraa.com

48 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

F
ig

u
re

3
.8

P
er

fo
rm

an
ce

M
ap

fo
r

th
e

U
In

sp
ec

t
co

lla
b
or

at
iv

e
u
sa

b
ili

ty
in

sp
ec

ti
on

s
to

ol

re
co

rd
in

g
in

sp
ec

tio
n

re
co

rd
in

g
in

sp
ec

tio
n

in
sp

ec
tio

n
fo

llo
w

u
p

in
sp

ec
tio

n
fo

llo
w

u
p

pr
ep

ar
in

g
fo

r
in

sp
ec

tio
n

pr
ep

ar
in

g
fo

r
in

sp
ec

tio
n

pr
ep

ar
in

g
re

co
rd

pr

ep
ar

in
g

re
co

rd

or
ga

ni
zi

ng

in
sp

ec
tio

n
or

ga
ni

zi
ng

in

sp
ec

tio
n

de
sc

rib
in
g

de
fe

ct
 (t

yp
e,

 p
ro

bl
em

…
)

in
di
ca

tin
g

de
fe

ct
 lo

ca
tio

n

ge
tti

ng
 n

ex
t/p

rio
r/s

pe
ci
fic

 im
ag

e

ge
tti

ng
 n

ex
t/p

rio
r/s

pe
ci
fic

 d
ef

ec
t

de
sc

rib
in
g

de
fe

ct
 (t

yp
e,

 p
ro

bl
em

…
)

de
sc

rib
in
g

de
fe

ct
 (t

yp
e,

 p
ro

bl
em

…
)

in
di
ca

tin
g

de
fe

ct
 lo

ca
tio

n
in
di
ca

tin
g

de
fe

ct
 lo

ca
tio

n

ge
tti

ng
 n

ex
t/p

rio
r/s

pe
ci
fic

 im
ag

e
ge

tti
ng

 n
ex

t/p
rio

r/s
pe

ci
fic

 im
ag

e

ge
tti

ng
 n

ex
t/p

rio
r/s

pe
ci
fic

 d
ef

ec
t

ge
tti

ng
 n

ex
t/p

rio
r/s

pe
ci
fic

 d
ef

ec
t

se
le
ct

in
g

by
 (t

yp
e,

 lo
ca

tio
n…

)
se

le
ct

in
g

by
 (t

yp
e,

 lo
ca

tio
n…

)

so
rti

ng
 b

y
(ty

pe
, l
oc

at
io

n…
)

so
rti

ng
 b

y
(ty

pe
, l
oc

at
io

n…
)

se
tti

ng
 d

iff
ic
ul
ty

 e
st

im
at

e
se

tti
ng

 d
iff
ic
ul
ty

 e
st

im
at

e

pr
io
rit

iz
in
g

de
fe

ct
s

pr
io
rit

iz
in
g

de
fe

ct
s

pr
ec

ed
es

co
lla

bo
ra

tiv
e

us
ab

ili
ty

in

sp
ec

tio
n

se
ss

io
n

co
lla

bo
ra

tiv
e

us
ab

ili
ty

in

sp
ec

tio
n

se
ss

io
n

la
un

ch
in

g
in

sp
ec

tio
n

la
un

ch
in

g
in

sp
ec

tio
n

fin
di

ng
 u

sa
bi

lit
y

de
fe

ct
s

fin
di

ng
 u

sa
bi

lit
y

de
fe

ct
s

co
nc

ur
re

nt
,

co
or

di
na

te
d

pr
ec

ed
es

pr
ec

ed
esin

cl
ud

es
in

cl
ud

es

sc
he

du
lin

g
ge

tti
ng

 ro
om

re
cr

ui
tin

g
pa

rti
ci
pa

nt
s

sc
he

du
lin

g
sc

he
du

lin
g

ge
tti

ng
 ro

om
ge

tti
ng

 ro
om

re
cr

ui
tin

g
pa

rti
ci
pa

nt
s

re
cr

ui
tin

g
pa

rti
ci
pa

nt
s

ge
tti

ng
 n

ex
t/p

rio
r/s

pe
ci
fic

 s
te

p
ge

tti
ng

 n
ex

t/p
rio

r/s
pe

ci
fic

 s
te

p
ge

tti
ng

 n
ex

t/p
rio

r/s
pe

ci
fic

 s
ce

na
rio

ge
tti

ng
 n

ex
t/p

rio
r/s

pe
ci
fic

 s
ce

na
rio

ad
di
ng

 re
de

si
gn

/o
th

er
 n

ot
e

ad
di
ng

 re
de

si
gn

/o
th

er
 n

ot
e

fin
is
hi
ng

 a
 s

es
si
on

fin
is
hi
ng

 a
 s

es
si
on

re
qu

es
tin

g
cl
ar

ifi
ca

tio
n

re
qu

es
tin

g
cl
ar

ifi
ca

tio
n

en
te

rin
g

a
sc

en
ar

io
en

te
rin

g
a

sc
en

ar
io in
cl
ud

in
g

sc
re

en
 im

ag
e

in
cl
ud

in
g

sc
re

en
 im

ag
e

se
tti

ng
 d

ef
ec

t c
rit

er
ia
/c

at
eg

or
ie
s

se
tti

ng
 d

ef
ec

t c
rit

er
ia
/c

at
eg

or
ie
s

de
fin

in
g

in
sp

ec
tio

n
ba

si
cs

de
fin

in
g

in
sp

ec
tio

n
ba

si
cs

en
te

rin
g

sc
en

ar
io
 s

te
p

en
te

rin
g

sc
en

ar
io
 s

te
p

fin
is
hi
ng

 in
sp

ec
tio

n
se

tu
p

fin
is
hi
ng

 in
sp

ec
tio

n
se

tu
p

en
te

rin
g

sc
en

ar
io
 p

re
am

bl
e

en
te

rin
g

sc
en

ar
io
 p

re
am

bl
e

ge
tti

ng
 im

ag
es

ge
tti

ng
 im

ag
es

“d
riv

in
g”

pr
ot

ot
yp

e/
so

ftw
ar

e

no
tin

g
de

fe
ct

s

en
ac

tin
g

sc
en

ar
io
 s

te
p

“d
riv

in
g”

pr
ot

ot
yp

e/
so

ftw
ar

e
“d

riv
in
g”

pr
ot

ot
yp

e/
so

ftw
ar

e

no
tin

g
de

fe
ct

s
no

tin
g

de
fe

ct
s

en
ac

tin
g

sc
en

ar
io
 s

te
p

en
ac

tin
g

sc
en

ar
io
 s

te
p

www.manaraa.com

HUMAN ACTIVITY MODELING 49

Vocal objections to human activity modeling are likely also to come from the soft-

ware engineering community, particularly that segment most closely tied to the Uni-

fied Modeling Language. Although it is no doubt possible to find ways to shoehorn

human activity modeling into the procrustean bed of UML, this proposal makes no at-

tempt to do so for two reasons. First, the purposes of human activity modeling and the

professional constituency it is intended to serve are quite distinct from those of UML.

Moreover, UML is particularly deficient in supporting visual and interaction design of

user interfaces. Although it is possible to force fit user interface design problems and

concerns into the UML, the results are rarely satisfying, particularly from the perspec-

tive of the interests and common practices of interaction designers and other related

professionals, which is precisely the constituency targeted by activity modeling. Sec-

ond, UML itself is objectionable from a human-factors perspective (Henderson-Sellers

and Constantine, 1995a; 1995b), making it particularly inappropriate as a standard of

reference for models directed toward human-factors professionals.

Human activity modeling bears some similarity to other techniques in current anal-

ysis and design practice, particularly business process modeling, and it might be ar-

gued that human activity modeling is already covered by such techniques. However,

both the objectives and the targeted users of business process modeling and activ-

ity modeling are distinct. Business process modeling is intended to serve the needs of

business analysts and requirements engineers capturing precise definitions of key busi-

ness processes in terms of step-by-step workflow, well-defined decision criteria, and

the exact flow of control, information, and resources that must be reflected in software

that supports these business processes. For our purposes, then, business processes may

be thought of as special cases of the broader construct of human activities. Activity

modeling serves design professionals trying to capture the broad design implications

of human activities as loose and relatively unconstrained and often unpredictable com-

binations of tasks toward the end of creating more useful and usable products. The

differing needs and focuses of attention of these two analysis activities undertaken for

differing purposes require different tools and techniques.

Regrettably, the term activity is also used in UML, where it refers to the behavior

of a system expressed as a set of control and data flows. A UML activity diagram

is used to represent the dynamic view of a system as the flow of control and data

from activity to activity (Booch, Rumbaugh, and Jacobson, 2005). Business process

modeling borrows the notation of UML activity diagrams to create business process

diagrams which thus represent the workflow, inputs, and outputs of business processes

(Penker and Eriksson, 2001).

The primary purpose of human activity modeling is to provide practicing designers

of any ilk with a practical tool for expressing the most salient aspects of the human

activity context within which use of a system is embedded. Through relatively modest

extensions and minimal changes in process, the method of usage-centered design can

be firmly anchored in activity theory, thereby improving the practice of interaction

design and expanding the scope of application of activity theory.

No claim is made that human activity modeling in its present form is complete.

Although the current formulation was developed through an extensive retrospective

analysis of many projects and has been refined through generous feedback from early

www.manaraa.com

50 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

adopters and other colleagues, only long-term application in a variety of settings will

expose weak or missing elements or reveal which elements are most often of signifi-

cance in the design process. In putting this revised process to use, designers have the

opportunity to contribute to the refinement of both theory and practice, both models

and methods.

References

Booch, G., Rumbaugh, J., and Jacobson, I. (2005). The Unified Modeling Language
user guide. Addison-Wesley, Reading: MA.

Carroll, J. M., editor (1995). Scenario-Based Design: Envisioning Work and Technol-
ogy in System Development. New York: Wiley.

Cockburn, A. (2001). Writing Effective Use Cases. Addison-Wesley, Reading: MA.

Constantine, L. L. (1994). Essentially Speaking In Software Development, 2(11)

Reprinted in L.L. Constantine, editor, The Peopleware Papers. Upper Saddle

River, NJ: Prentice Hall, 2001.

Constantine, L. L. (1995). Essential modeling: use cases for user interfaces. Interac-
tions, 2(2):34–46.

Constantine, L. L. (1998). Abstract prototyping. In Software Development, volume

6 (10). Reprinted in S. Ambler, and L. Constantine, editors, The Unified Process
Elaboration Phase. San Francisco: CMP Books, 2000.

Constantine, L. L. (2003). Canonical abstract prototypes for abstract visual and inter-

action. In Jorge, J., Nunes, N., and Cunha, J., editors, Interactive Systems: Design,
Specification, and Verification, 10th International Workshop, DSV-IS 2003, Fun-
chal, Madeira Island, Portugal, June 11-13, 2003, Revised Papers, volume 2844 of

Lecture Notes in Computer Science, pages 1–15. Springer-Verlag.

Constantine, L. L. (2004). Beyond user-centered design and user experience. Cutter
IT Journal, 17(2):2–11.

Constantine, L. L. (2005). Peer reviews for usability. Cutter IT Journal, 18(1).

Constantine, L. L. (2006). Users, roles, and personas. In (Pruitt and Adlin, 2006),

The Persona Lifecycle: Keeping People in Mind Throughout Product Design, San

Francisco: Morgan-Kaufman, pages 87–110.

Constantine, L. L. (2002). Process agility and software usability:

towards lightweight usage-centered design. In Information Age.

http://www.foruse.com/articles/agiledesign.pdf.

Constantine, L. L. and Lockwood, L. A. D. (1999). Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered Design. Addison-Wesley,

Reading: MA.

Constantine, L. L. and Lockwood, L. A. D. (2002). User-centered engineering for Web

applications. IEEE Software, 19(2):42–50.

Cooper, A. and Reimann, R. (2003). About Face 2.0: The Essentials of User Interface
Design. New York: John Wiley and Sons.

Duignan, M., Noble, J., and Biddle, R. (2006). Activity theory for design. In HWID
2006. University of Madeira.

Engeström, Y., Miettinen, R., and Punamäki, R. (1999). Perspectives on Activity The-
ory. London: Cambridge University Press.

www.manaraa.com

HUMAN ACTIVITY MODELING 51

Fowler, M. and Scott, K. (1997). UML distilled: applying the standard object modeling

language. In Fowler, M., editor, UML Distilled. Addison Wesley, Reading: MA.

Gay, G. and Hembrooke, H. (2004). Activity-Centered Design. MIT Press.

Hackos, J. T. and Redish, J. (1998). User and Task Analysis for Interface Design. New

York: Wiley.

Hendersons-Sellers, B. and Constantine, L. (1995a). Notation matters. part 1: Framing

the issues. Technical Report 3.

Hendersons-Sellers, B. and Constantine, L. (1995b). Notation matters. part 2: Apply-

ing the principles. Technical Report 4.

Jacobson, I. (1992). Object-Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison-Wesley, Reading: MA.: .

Kaptalinin, V., Nardi, B. A., and Macaulay, C. (1999). The activity checklist. Interac-
tions, 6(4):27–39.

Lockwood, L. and Constantine, L. (2003). Usability by inspection: Collaborative tech-

niques for software and Web applications. In Constantine, L., editor, forUSE 2003
Performance by Design: Proceedings of the Second International Conference on
Usage-Centered Design, Focus on Computer Graphics. Rowley, MA: Ampersand

Press.

McMenamin, S. and Palmer, J. (1984). Essential Systems Analysis. Englewood Cliffs,

NJ: Prentice Hall.

Nardi, B., editor (1996). Context and Consciousness. Cambridge, MA: MIT Press.

Norman, D. (2005). Human-centered design considered harmful. Interactions,

12(4):14–19.

Norman, D. (2006). Private communication.

Patton, J. (2002). Hitting the target: adding interaction design to agile software devel-

opment. In OOPSLA ’02: OOPSLA 2002 Practitioners Reports, pages 1–ff. ACM

Press.

Penker, M. and Eriksson, H., editors (2001). Business Modeling with UML: Business
Patterns at Work. New York: Wiley.

Pruitt, J. and Adlin, T., editors (2006). The Persona Lifecycle: Keeping People in Mind
Throughout Product Design. San Francisco: Morgan-Kaufman.

Snyder, C. (2003). Paper Prototyping. San Francisco: Morgan-Kaufmann.

Strope, J. (2003). Designing for breakthroughs in user performance. In Constantine,

L., editor, Performance by Design: Proceedings of forUSE 2003, the Second Inter-
national Conference on Usage-Centered Design. Rowley, MA: Ampersand Press.

Windl, H. (2002). Designing a winner: Creating STEP 7 lite with usage-centered de-

sign. In Constantine, L., editor, forUSE 2002: Proceedings of the First International
Conference on Usage-Centered Design. Rowley, MA: Ampersand Press.

www.manaraa.com

4 A USER-CENTERED FRAMEWORK

FOR DERIVING A CONCEPTUAL DESIGN

FROM USER EXPERIENCES:

LEVERAGING PERSONAS AND PATTERNS TO

CREATE USABLE DESIGNS
Homa Javahery,

Alexander Deichman, Ahmed Seffah, and Mohamed Taleb

Human-Centered Software Engineering (HCSE) Group,
Department of Computer Science and Software Engineering,

Concordia University,
1455 Maisonneuve Boulevard West, Montreal, Quebec, Canada H3G 1M8,

Website: http://hci.cs.concordia.ca/www

Abstract. Patterns are a design tool to capture best practices, tackling problems that

occur in different contexts. A user interface (UI) design pattern spans several levels

of design abstraction ranging from high-level navigation to low-level idioms detailing

a screen layout. One challenge is to combine a set of patterns to create a conceptual

design that reflects user experiences. In this chapter, we detail a user-centered design

(UCD) framework that exploits the novel idea of using personas and patterns together.

Personas are used initially to collect and model user experiences. UI patterns are se-

lected based on personas pecifications; these patterns are then used as building blocks

for constructing conceptual designs. Through the use of a case study, we illustrate

53

www.manaraa.com

54 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

how personas and patterns can act as complementary techniques in narrowing the gap

between two major steps in UCD: capturing users and their experiences, and build-

ing an early design based on that information. As a result of lessons learned from

the study and by refining our framework, we define a more systematic process called

UX-P (User Experiences to Pattern), with a supporting tool. The process introduces

intermediate analytical steps and supports designers in creating usable designs.

4.1 INTRODUCTION

User-Centered Design (UCD) has been proposed in the literature to provide design-

ers with a general approach for interactive system design, by making end-users and

their experiences a focal point of the design process. Based on UCD principles, dif-

ferent design methods have been developed. These include Scenario-based design

(Carroll, 2000), Goal-directed design (Cooper, 1999), Contextual design, (Beyer and

Holtzblatt, 1998) and Participatory design (Ehn, 1998). These methods introduce tech-

niques for evolving and documenting the design at various steps of the process. If a

designer would like to model user experiences, tasks, and the context of use—relevant

techniques include personas, task analysis, scenarios, workflow modeling, and con-

text analysis. Furthermore, if a designer would like to build a prototype, conceptual

design, or detailed design—relevant techniques include design guidelines, principles,

style sheets, and patterns.

Although these methods share a common user-focused tenet, there exists a signif-

icant gap between current user analysis and modeling techniques, and the process of

deriving a UI conceptual design. Ethnographic and empirical techniques are generally

used to collect relevant user data to describe user experiences. These experiences are

then captured in narrative form, but the derivation of a conceptual design from them

is ambiguous and based on guided principles rather than a reproducible systematic

method. Even if some techniques like storyboarding try to “walk” designers through

relevant user tasks, they only address a subset of user experiences. There is little re-

producibility of solutions and traceability to user experiences. Often, the final design

is only the result of the designer’s background and knowledge rather than the result of

following a well-established and standardized method (Preece et al., 2002).

In Seffah et al. (2005), the need to build a tighter fit between user experiences and

design concepts is described as one of the main challenges in human-centered software

engineering. To advance the state-of-the-art and narrow this existing gap, we require

processes that support designers in deriving conceptual designs from user experience

descriptions. Such a process should be systematic, traceable, and practical, but should

also leave room for design creativity when appropriate. Figure 4.1 highlights the cur-

rent lack of such a process.

In this chapter, we propose a design framework and associated process to tackle this

problem. We investigate personas and patterns as two complementary artifacts which

can be correlated for the purpose of narrowing this gap. More precisely, our research is

tailored towards the definition of a systematic process that derives a pattern-oriented

design from persona descriptions, through a set of intermediate steps. The research

questions we have addressed are as follows: How can we systematically generate

a conceptual design from the model we have of the user experiences? How much

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 55

Figure 4.1 Current problem of deriving a design from user experiences

of this process can be automated or computer-supported? What are the major steps

in this process? By defining such a process and with tool support, it is possible to

empower UI designers with concrete design solutions that can be traced back to the

user experiences. This is of great help in empirical or formal validations, as well as

when design trade-offs are to be made.

In what follows, we will present the core UCD concepts applied relative to our

framework, and illustrate it using a case study.

4.2 A FIRST LOOK AT THE PROPOSED FRAMEWORK

We have proposed and defined a framework to help narrow the gap between user ex-

periences and conceptual design. The framework, illustrated in Figure 4.2, exploits

two key UCD artifacts. Its starting point is an understanding of user behaviors and

experiences, their tasks, and the context of their work.

Personas are the first key UCD artifact used. They are created iteratively to model

user experiences. Initially, the personas help to identify actual users for predesign

usability evaluation of the target application. Evaluation results from psychometric

and heuristic assessment are used to categorize potential users into a set of personas,

as well as to further enhance them—giving a clearer picture of user behaviors and

experiences, their tasks, and the context of use. Other inputs, such as task analysis

and scenario generation, are used to refine the persona set. Personas are represented

by a set of persona elements (examples are age and computer experience) and textual

descriptions (examples are general profile and interaction behavior).

Patterns, the second key UCD artifact used, are then selected based on personas.

In HCI, design patterns and their associated languages are used to capture essential

details of design knowledge. The presented information is organized within a set

of predefined attributes, allowing designers, for example, to search rapidly through

different design solutions while assessing the relevance of each pattern to their design.

Every pattern has three necessary elements, usually presented as separate attributes,

which are: a context, a problem, and a solution. Other attributes that may be included

are design rationale, specific examples, and related patterns. Furthermore, our patterns

include specific information about the user needs and usability criteria addressed.

The selected patterns are then used as “building blocks” and composed into a

pattern-oriented design. By using personas, we are able to have a precise under-

standing of the user and context of use. During pattern composition, specific steps

are followed which add structure to the design activity. This includes the use of a

User Experiences
UI Conceptual

Design

?

traceability

www.manaraa.com

56 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 4.2 The proposed framework

pattern-oriented design model which addresses the logical organization of the entire

application, as well as the use of pattern relationships. The latter exploits the genera-

tive nature of patterns, resulting in a network of patterns which can be combined in a

design. As an example, certain patterns are subordinate to others, meaning that they

can be composed within their super-ordinate pattern. Further details will be discussed

later in this chapter.

4.3 MODELING USER EXPERIENCES WITH PERSONAS

Understanding user experiences is the starting crucial step in user-centered design.

Several techniques have been proposed within the HCI community to understand users

and to model their needs. This includes user profiles, stereotypes, and personas. In our

UCD-based framework, we extend the concept of personas (Cooper, 1999) to model

user experiences.

Alan Cooper, the father of Visual Basic, first proposed the use of personas in soft-

ware design. His original work in 1999 brought the concept of personas from market-

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 57

ing to UCD; so as to redirect the focus of the development process towards end-users

and their needs. His work emphasizes personas as being fictitious characters, based

on composite archetypes, and encapsulating “behavioral data” gathered from ethnog-

raphy and empirical analysis of actual users. Archetypes have been used in marketing

research both as an alternative and as an extension of traditional market segmentation

and user profiling. Instead of modeling only “average” users, personas also take into

account boundary cases. The idea used is that all consumers are a mixture of certain

types of users.

Each persona should have a name, an occupation, and personal characteristics such

as likes, dislikes, needs, and desires. In addition, each persona should outline specific

goals related to the application or project in question. These goals can be personal

(e.g., having fun), work-related (e.g., hiring staff), or practical (e.g., avoiding meet-

ings) (Tahir, 1997). Personas are intended to help developers better understand both

the users and context of use for a planned tool or interactive system. Cooper (1999) ar-

gues that designing for any one external person is better than trying to design vaguely

for everyone. He also believes that for each project, a different set of personas should

be constructed. This is because each project targets different users in different contexts

of use. An example of the kind of information contained in personas is illustrated in

Table 14.1.

According to (Cooper, 1999), persona’s imaginary, though realistic, representation

of users’ goals and skills is beneficial to designers, programmers, and managers at

ending “feature debates.” Personas eliminate the construct of “the user” and guide

functional specifications. On the other hand, there are some pitfalls to avoid when

using personas as an interaction design tool. The major risk, reported by both Pruit

and Grudin (2003) and Mikkelson and Lee (2000) is the challenge to get the right

persona or set of personas without stereotyping. Persona creation implies choices and

biases that could overgeneralize or exclude users. Cooper would reply to this argument

saying that it is better to design for any one person instead of ineffectively designing

for the “masses.” Figure 4.3, adapted from Whitney Queensberry’s company website

(Cognetics, 2005), illustrates an example of a persona.

Similar to Pruitt and Grudin (2003), we believe that personas should be based on

empirical evidence and studies. Their approach encourages a more “global” use of

personas. This includes attempts to integrate personas in the software development

process by establishing relationships with other data sets through the use of artifacts

such as feature–persona matrices, foundation documents, and task descriptions. A

focus on ongoing qualitative and quantitative analysis is a central theme of their work.

In our framework, we use empirical evidence to create our personas and extend their

descriptions to include interaction details and scenarios. This will be illustrated in our

case study.

4.4 CREATING A CONCEPTUAL DESIGN USING PATTERNS

A conceptual design is an early design of the system that abstracts away from presen-

tation details. In this section, we will discuss how UI design patterns can be used as

design “blocks” to build a conceptual design. To elaborate, UI design patterns have

been introduced as a medium to capture, disseminate and reuse proven design knowl-

www.manaraa.com

58 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 4.1 Persona elements

Persona Elements Description
Identity Include a first and last name, age and other demographic

information.

Status Whether the user is a primary, secondary, tertiary, or anti-

user of the application. Typically, only primary and in some

cases, secondary users are included.

Goals Besides goals related to the application, it includes personal

and professional goals as well.

Knowledge and

Experience

Knowledge and experience including education, training,

and specialized skills. This should not be limited only to

the application.

Tasks Frequency, importance, and duration of most important tasks

related to the application.

Relationships Include information about user associates, since this could

give insight on other stakeholders.

Psychological profile

and Needs

Include information about cognitive and learning styles, as

well as needs such as guidance and validation of decisions.

Attitude and Motiva-

tion

Include information about the user’s attitude to information

technology and level of motivation to use the system.

Expectations Information about how the user perceives the system works,

and how the user organizes information related to his/her

task, domain, or job.

Disabilities Any disabilities, such as color blindness, related to mobility,

eyesight (wears contacts), etc.

Photograph Include a photograph that fits with the persona’s identity.

edge, and to facilitate the design of more usable systems. As a result, they are a key

artifact for user-centered design, with interesting ramifications for designing across a

variety of contexts. Patterns are toolkit-independent, presented in a specific format

with defined attributes, and applicable at different levels of abstraction. These lev-

els include the user-task model, navigation model, or the concrete presentation of the

user interface (UI). They are a great source of interest not necessarily because they

provide novel ideas to the software designer community, but because of the way that

they package already-available design knowledge. This way of presenting information

to designers promotes reusability of best design practices, and avoids reinventing the

wheel each time we develop a design.

Based on the original work of Christopher Alexander (1979), some HCI practition-

ers have proposed to connect individual patterns to create pattern languages. Exam-

ples are patterns for Web page layout design (Welie, 2003), for navigation in large

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 59

Favorite
Quote:

“A designer knows he has achieved perfection not

when there is nothing left to add, but when there is

nothing left to take away,”– St-Exupery

Company: Cognetics Corporation

Name: Linda

Title: Interaction Designer

Age: mid-30’s

Membership: SIGCHI, UPA and a local usability discussion group

Favorite
Tool:

The whiteboard—or anything that lets me iterate the design

quickly.

Education: M.S. in HCI

Specialties: Web, Intranet, Database Searching

Duties: Interview Users, Define Requirements, Produce Visual Designs,

Produce Specifications, Coordinate Usability Testing, and Pro-

duce UI Style Guide

Summary: After initially graduating with a Computer Science degree, Linda

spent several years as a Web administrator and programmer for

two software companies. She then returned to school to complete

an HCI degree and joined Cognetics upon completion of her de-

gree. With the vision in place, she works with users to analyze

their needs and requirements. She uses that data to produce a

draft of a UI and manages an iterative design process, combining

expert review with usability testing. She starts the design process

in Visio, but she prefers to construct low-fidelity HTML proto-

types as soon as possible for both review and testing. Once the

design is stable, Linda typically delivers annotated specs for the

full interface and the user interface style guide used to construct

the prototype.

Constraints: Linda is one of the few women who are red-green colorblind.

Access to users for user analysis is not always feasible, so Linda

must sometimes gather user data in more creative ways (tech sup-

port logs, surveys, remote interviews, etc.).

Figure 4.3 Example of persona (Cognetics, 2005)

information architectures (Engelberg and Seffah, 2002), as well as for visualizing and

presenting information (Wilkins, 2003). Different pattern collections have been pub-

lished including The Design of Sites (Duyne et alt., 2002) and Designing Interfaces
(Tidwell, 2005). In addition, specific languages such as emphUser Interface Design

Patterns (Laakso, 1993) and the UPADE Web Language (Javahery and Seffah, 2002)

have been proposed.

However, to support pattern use as part of the design process, specific frameworks

or methods are needed. To this end, Thomas Erickson (Erickson, 2000) proposed

using pattern languages as a lingua franca for the design of interactive systems, with

www.manaraa.com

60 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 4.4 A Site Map page implemented using Tree Hyperbolic, a sophisticated visual-

ization pattern

the purpose of disseminating the HCI body of knowledge. Such an approach assumes

that several types of relationships exist between patterns. Pattern-Supported Approach

(PSA) (Lafrenière and Granlund, 1999) links patterns with the purpose of supporting

early system definition and the derivation of a conceptual design. In this direction, the

set of design patterns that forms a language are also linked to the task model. As a

consequence, during system definition and task analysis, appropriate design patterns

are chosen for the design phase.

However, none of the above languages, frameworks or methods effectively lever-

ages relationships between patterns. Relationships between patterns are key notions in

the understanding of patterns and their use. In Taleb et al. (2006), we have defined five

types of relationships between Web patterns. Pattern-Oriented Design (POD) (Javah-

ery and Seffah, 2002) aims to exploit explicitly these relationships, as well as associate

patterns and their languages to the design process. POD consists of understanding

when a pattern is applicable during the design process, how it can be used, as well as

how and why it can or cannot be combined with other related patterns.

Moreover, to be effective in a user-centered design setting, patterns need to be bet-

ter associated with user experiences. Our framework tackles this problem by linking

personas with patterns, allowing us to narrow the gap between user experiences and

conceptual design. Patterns are chosen based on persona specifications, and then com-

bined to create a pattern-oriented design. In essence, pattern-based designs are consid-

ered as design blocks that apply in particular situations, based on a description of the

user experiences. Figures 4.4 and 4.5 portray examples of pattern-oriented designs.

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 61

Figure 4.5 A Home Page Design combining several patterns

4.5 AN ILLUSTRATIVE CASE STUDY

We applied the proposed framework to a design project with a popular Web appli-

cation, aimed at a specific user community—the National Center for Biotechnology

Information (NCBI) site (NCBI, 2005). The goals of the study were to (1) evaluate

whether the framework results in a more usable system, (2) evaluate the validity of

correlating personas and patterns for designers, and (3) understand the limitations of

the framework. It would lead us to conclude that we could either develop a more re-

fined process leading from personas to patterns, or that our framework needs to be

reworked.

The NCBI site is a well-established Bioinformatics website, with a large number of

users and a vast amount of information. Some of the NCBI’s specific aims include the

creation of automated systems for storing and analyzing biological information, the

facilitation of user access to databases and software, and the coordination of efforts to

gather biotechnology information worldwide (Attwood and Parry-Smith, 1999). High

user access and a great deal of content can often cause usability problems. Further-

more, the site acts as an information portal which aims to be a unique access point

to diverse and specialized bioinformatics tools. Users accessing and interacting with

the site and its tools have different behaviors ranging from simple information gather-

ing, such as article searching, to more advanced molecular biology tool usage, such as

www.manaraa.com

62 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

sequence alignment and molecular visualization tools. It is these interaction and task-

based behaviors, in addition to typical user characteristics such as age and application

experience, that should be considered by designers as part of their user experience

modeling. They should be correlated to different steps in the entire UCD process, and

most importantly, to the creation of an early design.

Personas were created iteratively. Our first set contained three personas, which

we believed covered the most representative users. As a starting point, we used do-

main analysis and ethnographic interview results to postulate representative users of

the NCBI site, including information about their experiences. A biomedical expert ad-

vised us on domain-specific information. The main user attributes that were taken into

consideration in differentiating our personas were age, work environment, and appli-

cation experience. Our initial field observations indicated that these attributes would

strongly influence user behavior.

First, we observed a relatively wide age range in our end-users (from young to older

adults). Older users were less comfortable with site navigation. They indicated issues

with cognitive and memory load, and difficulty remembering various sequences (of

actions) which they had performed earlier. Furthermore, compared with other groups,

older users seemed uncertain about their actions; they were more cautious about using

newer technology, and required more guidance. Second, we had users from industry,

academic, and clinical (medical practitioner) settings. Based on our field observations,

we expected variations in behavior among users depending on their work environment.

For example, users from industry were driven by deadlines and time limits. They

demonstrated less patience, and were looking for task efficiency and more control

over the system. Thirdly, application experience seemed to influence both the needs

and satisfaction levels with the website. Basic users, who had just started to use the site

within the past year, were dissatisfied. They demonstrated a sense of confusion about

site structure and navigation, expressed information overload, and indicated that they

needed more support. Intermediate users were more satisfied, but indicated that some

of the tools they needed could “work better.” Expert users were also quite satisfied,

but indicated that the website was slow at times and they wanted to perform their tasks

in a more efficient manner.

As highlighted previously, if constructed effectively, a persona should be suffi-

ciently informative and engaging so that it redirects the focus of the development

process towards end-users and their needs. However, constructing such an effective

persona is not easy. Therefore, as a means to increase their effectiveness, a persona

should be supported by user and empirical data (Pruitt and Grudin, 2003). To enhance

and render our personas more informative, we decided to gather more specific user

and behavioral information from usability evaluations with end-users and UI experts.

We had 39 participants in our study: 16 users for creating personas and predesign

evaluation, and 23 users for post-design evaluation. Predesign evaluation consisted of

psychometric and heuristic techniques to construct personas and identify usability is-

sues with the current design. We then used these personas, as well as accrued usability

results, to construct a UI design based on patterns. Post-design evaluation consisted

of a comparative study between the new and current designs. This was to determine

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 63

whether our framework added value to the design process, and helped with the overall

usability of the application.

4.5.1 Psychometric Evaluation to Quantify User Experiences

Psychometric evaluation enables us to quantify user experiences with certain proper-

ties of an application or site. In our study, we dedicated part of the questionnaire with

our NCBI users to collect this information; the other part was used to gather user char-

acteristics such as demographic details. Similar to McKenzie (2000), heuristics were

used to describe different facets or properties of the site, although the questionnaire

was used for psychometric-based evaluation. In other words, each set of questions

was correlated with a particular heuristic. Using a list of nine heuristics adapted from

Nielsen (1994) and Nielsen et al. (2001), we were able to cover the most important

aspects of usability by asking specific questions. For example, if we are to take the

first heuristic, Visibility and Navigation, the following tailored questions were asked

to assess user experiences with relation to the visibility and navigation of the site:

Do you find it easy to navigate on the NCBI website, especially when perform-

ing a new task?

Is it visually clear what is a link or a button?

Do you receive feedback and requested information promptly, such as when you

perform a BLAST search?

Is it easy to get lost when looking for information?

When we analyzed the results of the administered questionnaire, results differed

for users with varying application experience. Specifically, with relation to a number

of properties of the site: (1) Visibility and Navigation, (2) Consistency and Standards,

and (3) Help; two groups emerged (we have called them Novice and Expert users).

The results can be found in Figure 4.6. The only property of the site that both user

groups seemed to be satisfied with was Language and Communication. Other at-

tributes which we had initially thought to also affect user experiences with the site did

not demonstrate any significant differences.

4.5.2 Heuristic Evaluation

We carried out a second type of test with UI experts, who were asked to directly com-

ment on a set of accepted principles, similar to the heuristics described above. How-

ever, in contrast to the psychometric evaluation, heuristic evaluation is an inspection

method where UI experts evaluate a program’s user interface against the heuristics.

Nielsen introduced heuristic evaluation as a relatively low-cost method for identifying

usability problems in an existing program (Nielsen, 1994). To reduce testing costs,

Nielsen came up with a list of 10 heuristics that cover what he considered the most

important aspects of usability.

We used a small number of UI experts (three) for heuristic evaluation. The number

was small due to resource limitations of this project rather than to go with Nielsen’s

www.manaraa.com

64 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 4.6 Questionnaire results of Novice and Expert users

claim that “3 to 5” evaluators is sufficient (Nielsen, 2001). One evaluator was a senior

usability expert, whereas the other two were junior usability experts, with at least 2

years of experience in the field. The UI experts were asked to comment on the NCBI

site with relation to nine heuristics (we found two to be redundant for our purposes,

and therefore combined them), as well as to give comments and suggestions for im-

provement of navigation structure, home page, site map, and search tools. In addition,

they were given space to write any other comments they deemed relevant that were

not covered in the heuristics or specific items asked. A concise version of results is

as follows: all heuristics, except for Language and Communication, were found to be

problematic. Major problems found by UI experts were: (1) easy to get lost because

path or current position is unclear, (2) difficult to get out of undesired or error states,

(3) inconsistency amongst sites, such as with different menu structures, (4) informa-

tion overload, (5) not enough help and guidance for novice users, (6) lack of efficient

options for expert users, such as shortcuts. These results were similar to our earlier

ethnographic interviews with users.

In addition, UI experts were asked to comment on the following specific items of

the site: (a) navigation structure, (b) home page, (c) site map, and (d) search tools.

The navigation structure was found to be big and fairly complex, so it is easy for users

to lose their orientation on the site. The home page was found to be overloaded with

links, low in visibility, and no guidance for first time users. 2 out of 3 UI experts sug-

gested that it might be interesting to consider a different home page for different users,

based on their experience with the site (i.e., Novice vs. Expert users). In practice, a

site map is designed to give users who know what they are looking for, fast access to

a certain subsite; and for new users, additional help in locating a page or topic. The

site map for the NCBI site was found to be complicated and difficult to use for either

of these groups of users. Search tools on the NCBI site were found to be relevant for

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 65

more experienced users, but more explanation and control should be given to newer

users.

4.5.3 Pattern Selection and Composition

We started off with three personas for NCBI site users. However, after refining the

personas based on empirical results from our predesign evaluation, two predominant

personas emerged. To stimulate the imagination of the designers, we defined them

based primarily on application experience with the NCBI site and associated tools:

(1) the Novice tool user, with less than 1 year experience, and (2) the Expert tool

user, with more than 1 year experience. Furthermore, based on the different empirical

tests described, our personas were enhanced with information about user behavior

and experiences. Each persona was characterized by (a) personal characteristics, (b)

computer and bioinformatics skills, (c) interaction behavior with the site, including

tasks performed, and (d) scenario descriptions.

By using this newly gathered information, we applied pattern-oriented design to

close the gap between actual user experiences and the features offered by such com-

plex applications. We associated patterns with each type of desired task and user be-

havior, and combined them to design a more usable UI. The patterns used were from

Web pattern languages—UPADE (Javahery and Seffah, 2002) and Welie’s collection

(Welie, 2003). As illustrated in Table 4.2, we selected applicable patterns based on

information contained within our personas.

After pattern selection, we combined patterns into a comprehensive design.

Pattern-oriented design may be used to create Web applications that customize the

solution of common problems for different personas. Alternatively, they can guide

designers in finding compromise solutions based on design trade-offs. One ideal

design strategy in this case would be the implementation of separate home pages for

novice and expert users. The two different home pages would actually be the result of

using different types of patterns for each group of users. Although this strategy may

be ideal for the user community, our context information revealed that its practicality

and maintenance would be limited for such a large website, with a site architecture

that is so multifaceted. It therefore made more sense to settle for a compromise,

making the site usable for both types of users.
Taking into account earlier evaluation results, the two personas and the original

NCBI site, one example of a design decision is as follows:

The left navigation menu on the home page has important site links, however a

textual description of the link is provided under each name; this is only useful

for novice users who don’t know what kind of information they can find from the

links. This convenience for the novice user is a hindrance for an expert user as it

contributes to more scrolling.

A solution would be implementation as rollovers (on-fly description pattern) to help

new users. Using the selected patterns, we built a new design for a subset of the NCBI

site—this included the portal home page, the main navigation elements, the site map,

search tool, and some content pages. Selected pattern compositions are illustrated in

Figure 4.7 (as a pattern skeleton) and in Figure 4.8 (the prototype).

www.manaraa.com

66 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

4.5.4 Testing the Prototype

After applying the Persona to Pattern framework to the NCBI site, the resulting con-

ceptual designs were used as a blueprint to build a test prototype. We evaluated the

prototype in terms of usability, using principles of software usability measurement

Table 4.2 Pattern Selection based on persona

Persona 1 Persona 2
Donna Smith (The Novice User)

24 years old; Master’s student in

Biochemistry; works daily in a lab

Needs: Guidance, Simple Navigation

Xin Li (The Expert User)

37 years old; Molecular Biologist;

researcher in a pharmaceutical com-

pany

Needs: Control, Task Efficiency

Attribute/behavior Patterns Attribute/behavior Patterns
She recently started

doing bioinformatics-

based research, and

has only been access-

ing the NCBI site for

6 months

Novice user

patterns

He has been access-

ing the NCBI site for 2

years now, and is very

familiar with tools re-

lated to his research

Expert user

patterns

She is unfamiliar with

all the menu options

and functions and of-

ten needs guidance

On-Fly

Description

English is his second

language, and he is

not always comfort-

able with spelling

Index

Browsing

Alphabetical

Sitemap

She is still learning

about the NCBI site,

and wants general in-

formation about the

site

Executive

Summary

He uses the NCBI site

for specific tasks, such

as secondary structure

prediction and wants

to save results

Shortcut

MySpace

(customized)

She uses the site

mainly for liter-

ature and article

searches, information-

gathering, and has

only started to do

sequence alignment

searches

Index

Browsing

Simple Search

Likes to limit his

searches to specific

species and does not

have patience to go

through a long list of

possibilities

Advanced

Search

She gets lost looking

for information after

advancing more than 3

layers, and needs to go

back to a safe place

Convenient

Toolbar

Dynamic

Path

Likes to know about

recent discoveries and

advances in the field

Teaser Menu

Executive

Summary

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 67

based on ISO standards, and as indicated in (Msheik et al., 2004). We conducted a

comparative study with the current NCBI site, which according to (NCBI, 2005), has

been designed following “usability and user-friendly design guidelines.”

Our participants this time included 23 users; 19 users who fit our novice persona

and 4 users who fit our expert persona. The set of participants were selected initially

based on a phone interview to assess whether they fit our study. Furthermore, these 23

users were different from the original set of users who participated in our predesign

heuristic and psychometric evaluations. We primarily differentiated based on applica-

tion experience, where novice users had limited or basic experience, and expert users

had intermediate or advanced experience.

For novice users, we used a between-subjects (randomized) design, where each

participant was assigned to a different condition (Dix et al., 1993): (1) the prototype

built using our framework and (2) the current site. On one hand, by using a between-

subjects protocol, we were able to control any learning effects which would have oc-

curred if each user tested both conditions. On the other hand, this type of protocol

required a greater number of participants and a careful matching of participants be-

tween the two conditions; the reason being that individual differences between users

can bias the results.

Task duration, failure rates, and satisfaction ratings were collected and analyzed as

usability indicators. Users were given four common tasks to perform on the website,

with the purpose of calculating task duration and failure rates. A questionnaire was

employed to rank their satisfaction. We used ANOVA (Analysis of Variance) tests to

assess if the mean values were significantly different between the two conditions. We

also computed effect size, eta-squared (η2), which is a measure (of the magnitude)

Figure 4.7 Pattern Skeleton of NCBI home page

Convenient toolbar

Shortcut pattern

Index
browsing
pattern

Executive summary
pattern

Executive
summary

Teaser
menu

Executive summary
pattern

Search pattern

On-Fly
description

www.manaraa.com

68 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 4.8 Pattern-Oriented Design of NCBI home page

of the effect of a difference, independent of sample size. In HCI, due to commonly

small sizes of studies, effect size has been found to be appropriate (Landauer, 1997).

In general the greater the value of η2 is, the greater the effect. Some HCI practitioners

(McGrenere, 2004; McGrenere et al., 2002) use the following metrics for interpreting

eta-squared: 0.01 is a small effect; 0.06 is medium; and 0.14 is large. The results were

all statistically significant:

Task duration: Overall improvement of 55% for prototype; F (1, 14) = 6.4,

p<0.05, η2=0.67

Failure rates: Overall improvement of 100% for prototype; F (1, 16) = 6.4,

p<0.05, η2=0.29

Satisfaction ratings: Overall improvement of 82% for prototype; F (1, 16) =

11.53, p < 0.05, η2=0.42

Since expert users already had extensive experience with the NCBI site, we per-

formed only qualitative evaluations with them using both structured and open-ended

interviews. They were given time to explore both the prototype and current site, and

were asked a set of questions based on their experience. They were asked to give

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 69

first impressions about both sites (likes/dislikes and any noticeable differences), as

well as answer specific questions about individual Web pages (such as the portal home

page), the overall site, and ease of navigation. Results varied in response. Two out

of four users preferred the prototype, and noted that it was more “simplistic” and

“lightweight.” Other comments included that the prototype introduced less informa-

tion overload and increased clarity. They also found it easier in terms of navigation,

although they commented that they would need to get used to the new design. The

other two users did not have an overall preference, but preferred different aspects of

the two designs. Overall, the qualitative results with experts were what we expected.

Expert users have been using the site for an extended amount of time; they are used

to specific visual representations, habituated in performing tasks in a certain manner,

and are comfortable with the current navigation path.

4.5.5 Lessons Learned

The results from the NCBI study were encouraging, and they led us to conclude that a

more concrete process leading from personas to patterns was substantiated.

First, we found that applying the framework facilitated our design activities, al-

lowed us to incorporate sound UCD principles into our design, and afforded guidance

to an often ad-hoc process. The focus of the design activity was directed to the users

early on. Since, personas are a relatively lightweight user model, we did not require a

user or cognitive modeling specialist for their creation. By developing personas iter-

atively using empirical evidence, we were able to determine more precise interaction

behavior and usability problems with the application; these points were essential in se-

lecting HCI patterns. In this vein, the framework follows the reuse paradigm through

the use of these patterns, enabling us to make design decisions based on best practices.

Notably, in current practice, there exists no commonly agreed upon UI design process

that employs patterns and their languages as first class tools. It was our intention to

further develop the framework to overcome this problem.

Second, after applying the Persona to Pattern framework to the NCBI site, we car-

ried out comparative usability studies with the current site and our prototype. We

wanted to evaluate if the framework resulted in more usable systems. The results were

positive for both quantitative and qualitative measures. In particular, our prototype

indicated a statistically significant decrease in task duration and an increase in satis-

faction with novice users. For total task time, we noted an overall improvement of

more than 55%. Moreover, when we considered average satisfaction ratings of both

designs, we found that users were almost two times more satisfied with our prototype

as compared to the original design. As expected, our qualitative results with expert

users were also positive but more mixed, since they have extensive experience with

the current site.

Thirdly, there were some limitations we needed to address. The framework was

a first step in using the techniques of personas and patterns together. We noted that

links made between user experiences and design solutions were based on narrative and

qualitative data, assessed manually where the “best” pattern within a specific context

was selected. Any further development of our framework should include identifi-

able and discrete steps, and not be subject to extensive interpretation by the designer.

www.manaraa.com

70 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

This would require some formalization of the information contained in both personas

and patterns. We also realized early on that we would refer back to the personas

for additional information both during the selection of appropriate patterns, and for

pattern-oriented design. At times, the amount of additional information contained

within personas was lacking. Therefore, an enhancement of persona descriptions with

interaction behaviors, scenarios, and goals is an added value in guiding designers dur-

ing design decisions.

4.6 A DETAILED DESCRIPTION OF UX-PROCESS

Based on the initial knowledge extracted from the NCBI study and refined by informa-

tion collected from focus groups and interviews, we constructed a process following

a natural flow as currently applied by design experts. The process is called UX-P,

or User Experiences to Patterns. In this section, we will describe each phase of the

process, its inputs, outputs, and artifacts produced. Figure 4.9 illustrates the process

diagram, by depicting the flow of activities involved. The activities, which correspond

also to the process steps, are grouped into three distinct phases: Persona Creation,

Pattern Selection, and Pattern Composition. Persona Creation takes user data as input

and is expected to produce a set of representative personas. Pattern Selection takes

the personas and a pattern library as input, and produces an ordered set (based on im-

portance and relevancy) of candidate patterns for design. Based on these candidate

patterns, the Pattern Composition phase results in a conceptual design. It is important

to note that context information serves as input during all phases of the design.

4.6.1 Persona Creation

Persona Creation consists of three steps and a decision point: clustering users, veri-

fying that the clusters fit the context, modifying clustering parameters if needed and

refining personas. In essence, clustering consists of grouping users based on their

similarities and by analyzing a set of parameters. Once the users are grouped, it is

important to ensure that the results produced fit the context of the current design. If

the verification proves the clustering to be inadequate, the designer must modify the

parameters used and repeat the clustering. In fact, clustering should be repeated as

many times as required until the results are satisfactory. Once clusters are appropriate,

each resulting cluster can be represented by a skeleton persona. Finally, these skele-

ton personas can be refined by completing the description based on real data from

representative users.

Overall, the clustering step consists of grouping users based on their commonal-

ities. Therefore, this step is a good candidate for automation allowing user involve-

ment. In fact, k-means clustering or other statistical analysis techniques, when pro-

vided grouping parameters and a set of data, are capable of performing this task. Thus,

the major difficulty is in presenting data in computer-readable format and producing

flexible results.

The proposed solution is to describe a user by a set of variables grouped into cate-

gories. In order to assist the specialist, a finite amount of the categories and variables

must be defined. Moreover, each variable must have a finite amount of values. There-

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 71

Figure 4.9 The UX-P Design Process

www.manaraa.com

72 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

fore, it is proposed to have a set of basic categories that may evolve with time or

change based on the domain. Each category contains up to 10 variables with 5 pos-

sible values. For example, a category Knowledge and Experience contains a variable

Input Skills that can vary from none to expert. We propose to have a small amount of

categories and variables in order to provide a concise and complete description of the

user.

Once the users are described in computer-readable format, it is possible to interact

with the clustering algorithm. More precisely, a specialist can use one or more avail-

able automated grouping techniques in order to favor some aspects of the similarities

between analyzed users. That is, it might be more important to group users based on

their cognitive style than on their computer experience, or identify strong correlations

without ignoring boundary cases. In any case, this step is part of a creative process

and cannot be fully automated.

4.6.2 Pattern Selection

The pattern selection phase is composed of three steps and one decision point. This

phase resides at the core of our process. The steps are selecting patterns based on

personas, modifying the selection parameters, and filtering the pattern set. For select-

ing patterns based on personas, the personas created in the previous step are taken as

input. For each persona, patterns are suggested and prioritized, based on a set of rules.

The designer has a decision point at this step; if she/he is not satisfied with the pattern

set, the selection parameters can be modified. These two steps are repeated until the

pattern set is satisfactory. Finally, the designer can filter the pattern set based on the

envisioned design model.

In essence, mapping consists of logically linking a set of patterns to the personas.

It is expected that this step can be automated or at least computer supported. As a

result, a library of patterns should be presented in a format that will allow automation

and, at the same time, that can be interpreted by specialists. As a solution, we propose

to reuse the idea of user variables, presented above, and describe patterns as a set of

characteristics grouped into categories—which we call pattern variables. In fact, we

propose to separate human-readable and computer specific variables in different cate-

gories. More precisely, we have added a set of pattern variables to the standard textual

description of a pattern: usability-design criteria affected by a given pattern (such as

minimalist design or logical organization) and a special need criterion allowing us to

relate a pattern to a particular user group like color blind users. In this way, we can

link these criteria to personas based on their usability and special needs.

4.6.3 Pattern Composition

This phase consists of one step: composing patterns. This is purely a design activity

where selected patterns from the previous phase are used to create a design. Recall

that a valuable advantage of patterns and their associated languages is their generative

nature, meaning that they can essentially be combined together as building blocks.

However, design is an activity dependent on each designer’s creativity, background,

and expertise. Our goal is to simply provide some structure to the design activity,

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 73

Figure 4.10 Website structure using three basic information patterns

by presenting designers with: (1) a Pattern-Oriented Design (POD) model, and (2) a

means to exploit pattern relationships. Artifacts such as task and interaction models

may be used during this step, although they are external to our process. The designer

iterates through various compositions until a satisfactory pattern-oriented design is

attained.

First, designers should follow a POD model. We have published literature on this

model previously (Javahery et al., 2006). POD defines the overall design composition

of a particular type of application, including a breakdown of this composition into dif-

ferent UI facets. The model acts as a guide for designers in making stepwise design

decisions. To illustrate, for website design, we have defined four steps that design-

ers should follow: (1) defining the architecture of the site with architectural patterns,

where an example is illustrated in Figure 4.10, (2) establishing the overall structure

of each page with page manager patterns, (3) identifying content-related elements for

each page with information container patterns, and (4) organizing the interaction with

navigation support patterns. Landay and Myers (2001) and Welie (2003) also propose

to organize their Web pattern languages according to both the design process and UI

structuring elements (such as navigation, page layout and basic dialog style).
Second, designers should exploit relationships between patterns. We have de-

scribed five types of relationships between the UPADE patterns, published in (Taleb
et al., 2006): Superordinate, subordinate, similar, competitor, and neighboring. The
same relationships can easily be applied to other pattern libraries. This multicriterion
classification is based on the original set of relationships used to classify the patterns

www.manaraa.com

74 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 4.3 UX-P Process steps and tool support

No. Steps Tool Input Output

Persona Creation

1 Clustering users Y* user data user clusters

1b Modifying clustering pa-

rameters

Y user clus-

ters

modified parameters

2 Refinement of persona

set

Y user clus-

ters

personas

Pattern Selection

3 Selecting patterns based

on personas

Y* personas pattern set

3b Modifying selection pa-

rameters

Y pattern set modified parameters

4 Filtering pattern set Y pattern set filtered pattern set

Pattern Composition

5 Composing patterns N filtered

pattern set

pattern-oriented design

* – automated.

proposed by (Gamma et al, 1995). The relationships are used to compose a UI design,
allowing designers to make suppositions such as:

For some problem P, if we apply Pattern X, then Patterns Y and Z apply as subor-

dinates, but pattern S cannot apply since it is a competitor.

4.7 FURTHER INVESTIGATION: THE P2P MAPPER TOOL

As an attempt to better assist designers in using our process, we developed a support-

ing tool called the Persona to Pattern (P2P) Mapper. The proposed process involves a

set of repetitive, tedious, and time-consuming tasks. In addition, some of the steps and

artifacts described in the process have been constructed in a format which allows for

automation. The general steps comprising our process are illustrated in Table 4.3. The

persona creation and pattern selection phases were amenable for partial automation.

In particular, we automated the following steps: clustering users (step 1) and selecting

patterns based on personas (step 3). Moreover, we provided features for users to carry

out the remainder of the persona creation and pattern selection phases.

The P2P Mapper provides the designer with three major features: (1) the data entry

system, (2) the clustering utility, and (3) the pattern selection utility. The data entry

system provides the user with an interface to enter, view, and modify user information.

In particular, the designer provides a set of discrete user variables; optionally he/she

may also include narrative text illustrating popular user scenarios and other textual

descriptions.

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 75

Figure 4.11 Clustering in P2P Mapper

Once the data is entered, the tool provides the designer with automatic and inter-

active clustering capabilities (see Figure 4.11) to derive quantified persona specifica-

tions. Clustering is performed based on the discrete user variables provided during

the data entry phase. The tool provides the user with the choice between two clus-

tering techniques, namely, k-means clustering and interactive clustering. The former

technique is performed fully automatically but requires, apriori, an indication of the

desired number of clusters. The latter technique is performed in an interactive man-

ner, where the designer selects a subset of the user variables, on which the clustering

should be based. The tool then returns a number of clusters, which can be iteratively

refined and reduced by further constraining the allowed range of values of the selected

user variables.

Automatic clustering is more suitable for novice designers as it can be used as a

black box technique where the required designer intervention is minimal. It leaves,

however, the designer with very little control to influence the outcome of the clusters.

Iterative clustering is an interactive clustering method, which mimics the designer’s

strategy of manually building personas. Hence it provides the user with more influ-

ence on the outcome but requires advanced knowledge of the user variables and the

domain on which the clustering will be based. If none of the previously described

methods (automatic or interactive clustering) result in the desired set of clusters, the

www.manaraa.com

76 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

tool provides the designer with the option to manually manipulate and enter the various

clusters. Once the designer is satisfied with the set of clusters, a “quantified” persona

set is created (see Figure 4.12). Note that these personas are described by user vari-

ables and associated values. They should be extended manually by the designer with

textual descriptions such as interaction details and scenarios, based on information

gathered from representative users.

Based on these personas, the designer can use the mapping module in order to

create a set of patterns. This step is performed automatically based on the set of per-

sonas generated during the previous step. The mapping module selects patterns using

a scoring system; where, based on a set of rules, the various patterns are associated

with scores. These rules leverage the dependencies between user variables and pattern

variables, and simplify the task of a designer who would manually match usability and

special needs to particular personas. For example, if our persona is colorblind and has

a need for efficiency of use, the following patterns apply: (1) the pattern redundant
encoding indicates in its context that it is applicable for users with visual deficien-

cies such as color blindness (Wilkins, 2003), and (2) efficiency of use is a usability

need and one physical design implication would be to apply accelerators. One pattern

which is an accelerator is called macros (Tidwell, 2002).

After gathering the above information, designers can build a mental model under-

standing the potential pattern, its relationship with other patterns, and its applicability

in a given context of use. Supplemented by their design experience, they select a

subset of these patterns which they compose into a comprehensive design.

Figure 4.12 overviews the infrastructure of the P2P Mapper Tool. In its current

version, the tool supports the first two phases of the UX-P process, namely, Persona

Creation and Pattern Selection. We also note that our tool comes with a prepopulated

library containing the formalization of 83 patterns from the following pattern libraries:

GUI (Tidwell, 2005), Web (Javahery and Seffah, 2002; Welie, 2003), visualization

(Wilkins, 2003), and our own “special needs” patterns.

4.8 CONCLUSION

In current practice, the derivation of a conceptual design from user experiences is

based on loosely defined guidelines, giving rise to a significant “gap” between user re-

quirements and design outcomes. Typically, the outcome is reliant almost completely

on the designer’s intuition. This is especially problematic for novice designers who

lack the background and training required to make trade-offs, judgments, and interpre-

tations towards a usable design. In this chapter we propose a UI design framework to

support designers in deriving a conceptual design from user experiences. Its starting

point is an understanding of user behaviors and experiences, their tasks, and the con-

text of their work. Using different usability methods, empirical studies on all aspects

of the user’s interaction with the target application are conducted. Only then can we

perform a task analysis and scenario generation; followed by low-fidelity prototyping

and rough usability studies; resulting in a high-fidelity product for more rigorous user

testing.

The framework exploits two key UCD artifacts. Personas are created iteratively to

model user experiences, giving a clearer picture of the user behaviors and experiences,

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 77

Figure 4.12 Overview of P2P Mapper Tool

www.manaraa.com

78 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

their tasks and the context of use. Other inputs, such as task analysis and scenario

generation, are used to refine the persona set. Information contained in personas is

then used to select appropriate patterns—the second key UCD artifact used. In HCI

and empirical software engineering, user-oriented studies are required both to motivate

the research as well as to assess the validation and accuracy of the proposals. We

therefore applied our framework in a proof-of-concept with a popular Bioinformatics

website, which biologists use as a portal to access different analytical tools. The new

design was compared to the current design, and resulted in significant improvements

in terms of usability. The result was a positive increase in usability measures for the

resulting design prototype, including a significant improvement in task times and user

satisfaction.

Based on the results and lessons learned from our study, we refined our framework

into a more concrete process, called UX-P (User Experiences to Patterns). The pro-

cess consists of three phases, namel, Persona Creation, Pattern Selection and Pattern

Composition. Personas and patterns are used as the primary design directives. Fur-

thermore, UX-P is based on a set of key UCD principles which we have enriched with

“engineering-like” concepts such as reuse and traceability. The process rigorously

defines a set of steps from persona creation to the composition of a comprehensive

design. It incorporates a clustering step as part of persona creation, and a set of rules

to select patterns from persona specifications. Furthermore, we propose more formal

representations for personas and patterns amenable for tool support. We have imple-

mented a prototypical tool to provide support for our design process. The P2P Mapper

provides the designer with tool support for the persona creation and pattern selection

phases, and automates two of the substeps. An interactive environment is provided

for the designer where she/he can enter user data, as well as view and modify both

personas and candidate patterns.

The UX-P process defines a methodical link between personas and patterns. The

process is traceable since any given conceptual design is composed of patterns, and

for any given pattern, a set of user needs can be identified. By systematically mod-

eling users with our enhanced personas, the combination of both formal and infor-

mal descriptions guides designers during the design process, in decision making, and

trade-offs to be made. The formal descriptions as user variables are amenable for au-

tomatic analysis by the P2P Mapper. Furthermore, we extend pattern descriptions to

include knowledge about usability design principles and user groups which have spe-

cific needs, such as novice users or those that are colorblind. Pattern selection is based

on a set of rules, inferred from dependencies between user variables, pattern variables,

and usability principles. The rules were implemented within a scoring system which

takes user variables as input and outputs a list of patterns, ordered by their relevance.

Our research resulted in an initial design process to derive conceptual designs from

user experiences; however, it led to additional research questions that can be avenues

for further research. First, we described two types of associations between users and

patterns, through their needs: a direct association with special needs, and an indirect

association with usability needs. These associations allow designers to select a set of

patterns appropriate to their design. An interesting possibility for investigation would

be to further filter patterns based on task type. Recall that pattern descriptions make

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 79

reference to typical tasks of the user-task model. Some patterns are only applicable for

a particular task type (i.e., Advanced Search Pattern and tasks of type search). These

task types could act as further input into pattern selection, rather than being manually

assessed by designers.

Second, both our persona and pattern descriptions are a good starting point in stan-

dardizing the representation of personas and patterns, respectively. In current practice,

personas are constructed based on general narrative guidelines and contain information

which allows them to be little more than a communicative tool. Furthermore, pattern

writers have few guidelines in constructing patterns. This results in little consistency

in the structuring and definition of pattern descriptions for pattern libraries. It would

be interesting to explore the use of both our descriptions as a standard representation

of these two artifacts in HCI.

Thirdly, the associations discovered between user variables and pattern variables

were based on knowledge elicited from HCI experts. It would be valuable to test each

one of these through experimentation with end-users, to determine their precise im-

pact. In this vein, we note that our scoring system is based on the heuristics elicited

during expert consultation. Our knowledge elicitation activities concentrated on es-

tablishing associations between user experiences and design solutions attempting to

satisfy user needs. A further improvement of our scoring system can be its enhance-

ment with learning capabilities. Hence, the current implementation of the rules can be

understood as an initial configuration of a future expert system or a neural network,

which may be further adjusted and fine tuned based on the assessment of the quality

of the results.

One of the major problems we found is that mastering and applying large col-

lections as well as different types of patterns requires in-depth knowledge of both

the problems and forces at play. As such, it is inconceivable that the mapping rules

and ensuing pattern composition will evolve strictly from theoretical considerations.

Practical research and industry feedback are crucial in determining how successful a

pattern-oriented design framework is at solving design problems. It is therefore es-

sential to build an “academia–industry bridge” by establishing formal communication

channels between industrial specialists in UI design patterns, as well as pattern re-

searchers. It is hoped that such collaboration will lead to a common POD framework

that is essential in making the large diversity of patterns accessible to common UI de-

signers. At this time, the POD approach including the list of patterns and relationships

has been defined and illustrated for websites and Web applications. We can extend

these ideas to other types of applications as well. In addition, further investigation is

required to explore the scalability of the approach for multiple pattern-oriented designs

and platforms; as well as strategies for providing heuristics and computer-support to

designers during the pattern composition phase.

References

Alexander, C. (1979). A Timeless Way of Building. New York: Oxford University

Press.

Attwood, T. and Parry-Smith, D. (1999). Introduction to Bioinformatics. Addison

Wesley Longman Higher Education, Essex.

www.manaraa.com

80 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Holtzblatt, K. and Beyer, H. (1998). Contextual Design: Defining Customer-Centered
Systems. San Francisco, CA: Morgan Kaufmann.

Carroll, J. M. (2000). Making use: Scenario-based design of human-computer inter-
actions. Cambridge MA: MIT Press.

Cooper, A. (1999). The Inmates Are Running the Asylum: Why High Tech Products
Drive Us Crazy and How to Restore the Sanity. Indianapolis, IN: Sams.

Corporation, C. (2005). Persona of a cognetics design specialist.

http://www.cognetics.com/about/team/people4.html.

Dix, A., Findlay, J., Abowd, G., and Beale, R. (1993). Human Computer Interaction.

Prentice Hall: New York.

Duyne, D. K. V., Landay, J., and Hong, J. I. (2002). The Design of Sites: Patterns, Prin-
ciples, and Processes for Crafting a Customer-Centered Web Experience. Addison-

Wesley, Reading: MA.

Ehn, P. (1998). Work-Oriented Design of Computer Artifacts. Ph.D. thesis. Stockholm:

Arbetslivscentrum.

Engelberg, D. and Seffah, A. (2002). Design patterns for the navigation of large in-

formation architectures. In 11th Annual Usability Professional Association Confer-
ence, Orlando, FL.

Erickson, T. (2000). Lingua francas for design: sacred places and pattern languages.

In Proceedings of DIS’00: Designing Interactive Systems: Processes, Practices,
Methods, & Techniques, Pattern Languages, pages 357–368.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley Professional Computing

Series. http://www.aw.com.

Javahery, H. and Seffah, A. (2002). A model for usability pattern-oriented design. In

Pribeanu, C. and Vanderdonckt, J., editors, Task Models and Diagrams for User
Interface Design: Proceedings of the First International Workshop on Task Mod-
els and Diagrams for User Interface Design - TAMODIA 2002, 18-19 July 2002,
Bucharest, Romania, pages 104–110. INFOREC Publishing House Bucharest.

Javahery, H., Sinnig, D., Seffah, A., Forbrig, P., and Radhakrishnan, T. (2006). Pattern-

based UI design: adding rigor with user and context variables. In Proceedings of
TaMoDia 2006, Hasselt.

Laakso, S. (1993). Collection of user interface design patterns. University of Helsinki,

(September 16, 2003); http://www.cs.helsinki.fi/u/salaakso/patterns/.

Lafrenière, D. and Granlund, A. (1999). A pattern-supported

approach to user interface design. UPA 99 Workshop Report;
http://www.gespro.com/lafrenid/Workshop_Report.pdf.

Landauer, T. K. (1997). Behavioral research methods in human-computer interaction.

In Handbook of Human-Computer Interaction. Amsterdam: North-Holland, 2nd

edition.

Landay, J. A. and Myers, B. A. (2001). Sketching interfaces: toward more human

interface design. IEEE Computer, 34(3).

McGrenere, J. (2004). Iterative design and evaluation of multiple interfaces for a com-

plex commercial word processor. In Seffah, A. and Javahery, H., editors, Multiple

www.manaraa.com

DERIVING A CONCEPTUAL DESIGN FROM USER EXPERIENCES 81

User Interfaces: Cross-Platform Applications and Context-Aware Interfaces. New

York: Wiley.

McGrenere, J., Baecker, R. M., and Booth, K. S. (2002). An evaluation of a multiple

interface design solution for bloated software. In Proc. of SIGCHI, CHI’02, pages

164–170. ACM Press.

McKenzie, K. (2000). 10 usability heuristics. http://www.studiowhiz.com/
_publications/10heuristics.php.

Mikkelson, N. and Lee, W. (2000). Incorporating user archetypes into scenario-based

design. In UPA Workshop.

Msheik, H., Abran, A., and Lefebvre, E. (2004). Compositional structured component

model: Handling selective functional composition. In EUROMICRO, pages 74–81.

IEEE Computer Society.

NCBI (2005). National Center for Biotechnology Information.

http://www.ncbi.nlm.nih.gov/.

Nielsen, J. (1994). Heuristic evaluation. In Nielsen, J. and Mack, R. L., editors, Us-
ability Inspection Methods. New York: Wiley.

Nielsen, J. (2001). How to conduct a heuristic evaluation. (November 2001);

http://www.useit.com/papers/heuristic/heuristic evaluation.html.

Preece, J., Rogers, Y., and Sharp, H. (2002). Interaction Design: Beyond Human-
Computer Interaction. New York: Wiley. OCLC 48265540.

Pruitt, J. and Grudin, J. (2003). Personas: practice and theory. In Proceedings of
DUX’03: Designing for User Experiences, number 6 in Informing DUX, pages

1–15, New York. ACM Press.

Seffah, A., Gulliksen, J., and Desmarais, M. C., editors (2005). Human-Centered
Software Engineering: Integrating Usability in the Development Process. Wiley,

Boston.

Tahir, M. (1997). Who’s on the other side of your software: creating user profiles

through contextual inquiry. In Proceedings of Usability Professionals Association
Conference UPA ’97, Monterey.

Taleb, M., Javahery, H., and Seffah, A. (2006). Pattern-oriented design composition

and mapping for cross-platform Web applications. In Proceedings of DSV-IS 2006,

Dublin.

Tidwell, J. (2002). Ui patterns and techniques. http://timetripper.com/
uipatterns/index.php.

Tidwell, J. (2005). Designing interfaces : Patterns for Effective Interaction Design.

Cambridge, MA: O’Reilly.

Welie, M. (2003). Interaction Design Patterns. http://www.welie.com/.

Wilkins, B. (2003). MELD: A Pattern Supported Methodology for Visualization De-
sign. Ph.D. thesis, submitted to The University of Birmingham, School of Com-

puter Science.

www.manaraa.com

5 XML-BASED TOOLS FOR

CREATING, MAPPING, AND

TRANSFORMING USABILITY

ENGINEERING REQUIREMENTS
Fei Huang, Jon Titus,

Allan Wolinski, Kevin Schneider, and Jim A. Carter

University of Saskatchewan, Saskatoon, SK, Canada

Abstract. This paper introduces a set of XML-based and XMI-based tools for creating

usability engineering requirements and automatically transforming them into software

engineering specifications. Each of these tools is data-driven and uses XML to max-

imize flexibility, accessibility, and translatability. These tools are primarily intended

for use by usability engineers to create usability engineering (UE) requirements, an-

alyze accessibility issues, and automatically transform UI requirements into software

engineering specifications. By transforming usability requirements into software engi-

neering specifications, usability engineers can help software engineers design systems

that satisfy the applicable usability requirements. Additionally these tools can be used

by researchers investigating usability engineering methodologies.

5.1 INTRODUCTION

There is a need for unifying the user interface development methodologies of soft-

ware engineers, usability engineers, and other computer professionals (Carter et al.,

83

www.manaraa.com

84 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

2005). The integration of usability engineering (UE) and software engineering (SE)

can also aid in the development of systems that are universally accessible (Savadis and

Stephanidis, 2004).

This chapter describes research under way in USERLab at the University of

Saskatchewan that deals with developing UE methods and methodologies and

integrating them with SE methodologies. In particular, this chapter discusses research

integrating the USERLab’s Putting Usability First (PUF) methodology and the

USERLab’s Common Access Profile (CAP) method with SE methodologies.

5.1.1 The Putting Usability First Methodology

The Putting Usability First Methodology (PUF) is a UE methodology that attempts to

balance usability concerns for both end-users and the developers who create systems

to serve them (Carter et al, 2005). It can be used to support the iterative evolution

of the requirements of five types of entities (scenarios, tasks, user groups, content

chunks, and tools) throughout a systems development lifecycle (possibilities identifi-

cation, possibilities analysis, requirements analysis, design, construction, testing, and

implementation). It can also be used as a means of creating usability requirements and

integrating them with a software engineering development lifecycle.

5.1.2 The Common Access Profile

The Common Access Profile provides a method for identifying and dealing with acces-

sibility issues in a standardized manner across multiple platforms (Fourney & Carter,

2006; ISO, 2007). The CAPs of users, systems, and environments can be compared to

determine the potential for systems and system components (including assistive tech-

nologies) to meet the unique accessibility needs of an individual user or of a group of

users with different needs.

5.1.3 Requirements, Tools, and Guidance

While it is important to develop methodologies and methods such as PUF and CAP,

it is even more important to ensure that they can have an impact on actual software

development. This involves recognition of the key role in project management played

by software engineers. If UE methods do not integrate with SE methodologies, they

may have little impact on actual development.

Software engineering tends to focus on “functional requirements” which are easy

to translate into algorithms and data structures. This leaves the need to identify, inte-

grate, and meet other, so-called “non-functional” requirements (Cortellessa and Pom-

pei, 2004), throughout the development lifecycle, including those typically addressed

by UE. Early identification and validation of these “non-functional” requirements is

essential regardless of whether this is done by software engineers or other profession-

als who are more interested in these aspects of system analysis and design (Cysneiros

and Sampaio do Prado Leite, 2001; Jerome and Kazman, 2005). In addition to project

specific usability requirements, usability requirements should consider the user needs

www.manaraa.com

XML-BASED TOOLS 85

that support accessibility. As well, products are increasingly required to be localized

for particular populations and cultures (Jagne and Smith-Atakan, 2006).

There is a need for development tools to better support UE (Carter, 1999) and re-

quirements engineering (Zhang and Eberlein, 2003) and their integration with SE.

The integration of the results and activities of UE and SE has been hampered by the

different methods, notations, and tools that each specialty has developed (Seffah and

Metzker, 2004). Metamodels for development methodologies (ISO, 2006c) are be-

ing developed to facilitate the comparison, integration, and customization of develop-

ment methodologies. Various researchers (Cortellessa and Pompei, 2004; Cysneiros

and Sampaio do Prado Leite, 2001; Jerome and Kazman, 2005) have focused on the

integration of UE (UE) and other non-functional requirements into the set of UML

diagrams that are used by SE (SE).

XML Metadata Interchange (XMI) provides a means “to enable easy interchange of

metadata between application development lifecycle tools” (ISO, 2005). UML 2.1.1

XMI (Object Management Group, 2006b), which defines the content of an XML doc-

ument that XMI creates, can be used to determine whether the UML metamodel data

satisfies all of the UML metamodel’s semantics constraints.

XML is used to represent the XMI interchange format and XML provides a good

basis for recording specifications, for transforming specifications between methodolo-

gies, and for analyzing specifications to provide appropriate design guidance (Gaf-

far and Seffah, 2005; ISO, 2005). Nowadays, most UML CASE tools support XMI.

Open source UML tools, such as ArgoUML (University of California, 2007), automat-

ically generate XML files from UML diagrams, including: use case diagrams, class

diagrams, and collaboration diagrams. The XML code in this paper is produced by

ArgoUML.

There is a growing body of guidance developed by ISO TC159/SC 4 Ergonomics

of Human-System Interaction and ISO/IEC JTC1/SC35 User Interfaces. There is also

increasing international agreement in terms of high-level guidance (ISO, 2006a), and

detailed guidance (ISO, 2006b) for making systems accessible. As this body of guid-

ance grows, there is an increasing need for development tools to aid developers in

identifying and applying this guidance (Carter, 1999). Tools can be developed to ana-

lyze XML-based requirements to identify guidance from applicable international stan-

dards; to identify accessibility issues (ISO/IEC, 2007); to extract, analyze user inter-

face design patterns (Gaffar and Seffah, 2005); and to identify architecturally sensitive

usability scenarios (Adams et al., 2006).

5.2 TOOLSET OVERVIEW

The primary goal of this research is to investigate and develop accessible methods,

techniques, and tools for supporting development of accessible software systems. This

is being accomplished by developing and using a data-driven workbench of tools for

use by researchers and developers of interactive systems. XML provides a common

basis for defining schema to support different development methodologies (including

the PUF methodology and the CAP method).

Figure 5.1 shows the architecture of the main tools in the USERLab workbench.

Basic support for UE will be provided by a combination of a Methodology Admin-

www.manaraa.com

86 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 5.1 The structure of the USERLab toolset and its databases

istration Tool (that is used to specify the schema used to record requirements for a

given methodology or method) and a UE Development Tool (that uses these schema

to capture project specific requirements). This project is unique in that it separates out

methodology administration (specification and modification of the record schema to

support a given methodology) from using the methodology to capture requirements

and to perform other lifecycle support processes. The resulting requirements and

schema provide inputs to three sets of advanced tools: an Access Analysis Tool, a

set of Mapping and Translation Tools, and a set of Specification Analysis Tools. The

requirements specified in the analysis of the different tools within this project can be

used as the basis for an initial evaluation of the usability of each of these advanced

tools. The results of these evaluations will be used to identify improvements to one or

more of the tools and their associated methods.

5.2.1 Methodology Administration

The Methodology Administration Tool (MAT) helps researchers and developers to

investigate, develop, modify, and support various development methodologies without

having to create separate development support tools for each one.

The MAT assists in creating a master schema for the requirements and specifica-

tions of multiple development methodologies and methods that will be used by a single

UE Development Tool (Wolinski, 2005; Titus, 2006). The unique features of the MAT

are discussed in Section 5.3 of this paper.

The MAT supports both defining a master version of individual methodologies

and developing customized versions of methodologies to meet the needs of individ-

ual projects (including combining records from different methodologies and methods,

such as PUF and CAP). This facilitates the investigation of alternate UE methodolo-

www.manaraa.com

XML-BASED TOOLS 87

gies and variations of these. It also demonstrates a practical method of achieving

cultural and linguistic adaptability by storing all headings and labels in a database,

designed so that headings and labels in different languages can be substituted for each

other.

5.2.2 Usability Engineering Development

The UE Development Tool (UEDT) helps usability engineers to create, manage, and

query UE specifications at various stages within a project development lifecycle. The

UEDT is a flexible tool driven by schemata produced by the MAT. This flexibility

allows the UEDT to be used in researching and applying various UE methodologies.

The features of the UEDT are designed to meet the usability and accessibility needs

of developers, including developers with disabilities. Extensive navigation is provided

directly between interlinked specification records and between specification records

and various types of management reports. Each successive lifecycle stage can involve

adding more detailed information to existing information. The UEDT helps manage

development activities by identifying which requirements have been completed by the

usability engineer and which requirements have been approved by the user at each

stage of the lifecycle.

The UEDT provides a means for prototyping different development methodolo-

gies and capturing UE requirements in a format that supports their analysis and their

transformation into UML.

5.2.3 Analyzing Accessibility

The Access Analysis Tool (AAT) is used to compare CAPs of users, systems, sys-

tem components (including assistive technologies), and their environments to identify

issues that should be overcome to improve accessibility. It allows developers to con-

sider possible configurations of assistive technologies that could eliminate or reduce

accessibility obstacles.

The ATT (along with the previous two tools) supports accessibility assessment

based on ISO/IEC 24756 (2007). The ATT can be used to identify access related

issues in specific configurations of users, environments, and systems and can be used

to help identify alternate configurations, including assistive technologies where nec-

essary, that can reduce or eliminate these issues.

A CAP-specific version of the UEDT will be produced as a standalone tool to use

in specifying CAPs, as defined in ISO/IEC 24756 (2007). It is expected that this may

lead to the development of a registry of CAPs for various commercial hardware and

software systems (including assistive technologies).

5.2.4 Translating UE Requirements into SE Specifications

The Mapping and Translation Tools (MaTTs) help integrate UE requirements into

traditional SE (UML-based) specifications both in research and in development activ-

ities. They aid in defining the role and interactions of usability engineers within early

www.manaraa.com

88 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

stages of a development project. The MaTTs are usable with any methodologies that

are XML-based.

The MaTTs supports analyzing and comparing semantics of different requirement

specification schema, and translating between the source schema and the target schema

components (Huang, 2006). This allows usability engineering requirements to be used

as a starting point for the project’s software engineers. These tools are also intended

to support research into the unification of various development methodologies and

models, especially the unification of UE and SE approaches to development.

The Methodology Mapping Tool (MMT) takes two XML-based specification

schema, such as the PUF XML schema and the UML XML schema, helps the

researcher analyze and compare semantics of these structures, and outputs a set of

rules for producing a set of mappings between the source schema and the target

schema components. It supports single tag mapping and multiple tag mapping and

the specification of the type of relationship for each mapping (exact, inclusion, and

non existing). The unique features of this mapping are discussed in Section 5.4 of

this paper.

The Methodology Translation Tool (MTT) uses information from the mapping tool

to transform a usability requirement instance from the source XML schema (e.g., PUF)

into an instance of a different (e.g., UML) target XML schema. There are four inputs to

the transformation: (a) the project specifications database containing the source XML

document (the UE methodology-specific tags and data); (b) the project specifications

metadata database containing the tag structure; (c) the target XMI schema; and, (d) the

source to XMI mapping database. The inputs are transformed into a target XML docu-

ment (e.g., a set of XMI records containing the PUF/CAP/other UE specifications) and

an enhanced XMI schema (e.g., an XMI schema containing the PUF/CAP/other UE

metadata). The tool creates both an improved XMI structure and initial requirements

including the UE requirements captured by the flexible UE Development tool. The

requirements are used as a starting point for the project’s software engineers. Unique

features of this translation are discussed in Section 5.5 of this chapter.

5.2.5 Analyzing UE Requirements and SE Specifications

The Specification Analysis Tools (SATs) analyze sets of UE/SE specifications, created

by the UEDT or the MaTT, in terms of international standards and design patterns that

can aid in developing systems to meet these usability and accessibility specifications.

These tools support the development of a database of user interface design guidance

(based on existing international standards and design patterns), the mapping of these

standards and design patterns to different methodology schema components, and the

use of the resulting information in analyzing specifications. The resulting design con-

sistency can improve usability while reducing development costs.

The SATs will help to research possible UE contributions to the design of systems.

In the long run, they will help to provide UE guidance to developers, regardless of

whether the developers are usability engineers, software engineers, or other types of

computer professionals.

www.manaraa.com

XML-BASED TOOLS 89

5.3 USING XML TO STRUCTURE UE SPECIFICATIONS

The Methodology Administration Tool (MAT) provides a tool for a methodology de-

veloper or researcher to define metadata for a new or existing methodology and to

create or modify requirement record templates to be used by this methodology. It uses

XML to format and store methodology metadata and record template descriptions.

A methodology schema involves a methodology metadata record and zero, one,

or multiple requirement template records. The methodology developer can view and

edit: all data associated with a methodology, the methodology metadata record alone,

and/or individual requirement record templates.

A methodology developer can create a new methodology schema either on its own

or based on the schema from one or more methodologies already defined by the MAT.

Copies may be made of a given methodology and modified to make them more suitable

to the unique needs of individual projects. Each copy of an existing methodology is

treated separately in the MAT database, to allow it to be modified without affecting

the original methodology. Copies may also be made of individual requirement record

templates from other methodologies at any time during the development of a new

methodology. Each new copy is created as a unique record in the database and linked

to the new methodology. This new copy is separate from the original and therefore

changes to it are not reflected in the original record template

5.3.1 Methodology Metadata

MAT methodology metadata provides a starting point for defining methodology

schema. It includes:

1. A unique methodology name

2. A unique abbreviated name

3. A unique id (for internal use only)

4. A short description of the methodology’s purpose

5. A long description of the methodology’s purpose, components, operations

6. Linkages to associated record template records

5.3.2 Methodology Requirements

Methodologies generally involve one or more templates used to record requirements

identified by a project developer who is following the methodology. The MAT pro-

vides a powerful means of creating templates to be used in the UEDT by project de-

velopers.

All MAT requirement template records (RTRs) include the following associated

descriptive information:

1. The name of the RTR

2. A short description of the purpose of the RTR

www.manaraa.com

90 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

3. A full description of the purpose and use of the RTR

4. The RTR’s frozen (or not frozen) status

5. Record management information consisting of: its designer proposed level and

its user accepted level

Once a methodology schema is completed and put into production for use in the

UEDT, it is important to freeze changes to it (using a frozen status flag in the RTRs),

so that all project requirement data remains consistently described by the associated

methodology schema.

Record management information is designed to aid a project developer using the

UEDT to manage the collection of requirements for a given project. Levels of user

acceptance correspond to the hierarchy of sections in the requirement record template.

The project developer can propose a section is ready for user acceptance. A user is

then able to accept or reject the section. If a project developer modifies a user accepted

section, the section level the user has approved is reduced as is the section level the

project developer had proposed for approval.

5.3.3 Requirement Template Building Blocks

The MAT provides “building block” components for a methodology developer to de-

fine a new record template. These components include: section headers, hierarchal

header items, linkage items, and question items.

These components are supported by a hierarchal system where section headers are

the top level component. Hierarchal headers, linkages, and questions belong to a

‘parent’ section header or item. The hierarchy is visually defined in the interface to

the MAT by using indention and a numbering system. Figure 5.2 illustrates the use of

MAT to develop a task requirement template for the PUF methodology.

Section header items include a section name and an abbreviation. The abbreviation

must be unique to allow the project developer and user to use in proposing and approv-

ing the completeness of each section. A hierarchy header item only requires a header

field for its name. A linkage item requires its name, type, the minimum and maximum

number of times it may occur, and its related record type. A question item is to in-

clude its question and answer type and its minimum and maximum occurrences. Each

component includes a comment field that may be viewed by the project developer or

user or that may be hidden by the developer from the user.

When a methodology developer wants to add a new item, he is given a choice of

the type of item to be added. The new item is added directly below the previous item.

The methodology developer is then able to indent the item if necessary to create the

desired hierarchy. An item cannot be indented more than one level under its parent.

A developer can later decide to modify the hierarchy by moving an item out from its

parent. If this is done, the moved item’s children (if any) should move with it. A

methodology developer is also able to delete an item. In the case where an item has

children, a developer is given the choice of whether its children should also be deleted

or whether they should join the deleted item’s parent.

www.manaraa.com

XML-BASED TOOLS 91

Figure 5.2 Creating a requirement template record with the MAT

5.3.4 Using XML to Structure Task Requirement Records for PUF

The MAT can be used to produce an XML schema for PUF, CAP, and other UE

methodologies. An XML schema definition (XSD) shows a high-level abstract view

of XML documents of that type which includes the XML tags and their interrela-

tionships. XML schema can be used to create and use a type of XML document by

imposing a set of rules and constraints on their structure and content.

Tables 5.1 and 5.2 provide partial examples of XML tags created using the MAT to

define components of task requirement records for PUF. XML tag names come both

from the methodology (e.g., “What” is used to identify a linkage to task requirement

records in PUF) and from the type of structural element that is being used by the

methodology (e.g., “linkquestion”). The overall structure of a requirement record is

controlled using section numbers. Note that the MAT produces generic XML tags.

The data of some of these tags actually acts as more specific tags.

While the complete PUF XML document contains a number of tags that are in-

tended only for the use of a project developer using the UEDT, Table 5.3 contains

a discussion of select XML tags that deal with requirements data and indicates how

some of these tags and their data can be transformed into UML specifications.

www.manaraa.com

92 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 5.1 MAT-created XML for a PUF Task Record’s Identification Information section

PUF Header PUF XML tags
Identification
Information
Type

Name

Description

<TaskRecord>
<section> <number>1</number>
<sectionheading>Identification Information</sectionheading>
<question simple> <number>1.1</number>
<questionheading>type</questionheading>
<answer>task </answer>

< /question simple>
<question simple> <number>1.2</number>
<questionheading>name</questionheading>
<answer>Answer data goes here </answer>

< /question simple>
<question multi> <number>1.3</number>
<questionheading>description</questionheading>
<answer>Answer data goes here</answer>
<answer>for as many answers that there are</answer>

< /question multi>
< /section>

5.4 MAPPING BETWEEN XML-BASED UE AND SE

SPECIFICATIONS

Mapping is the first of the two-stage process that can transform UE specifications into

SE requirements. Mapping only needs to be performed once for each pair of method-

ologies. It provides the logic to be used and reused in translating sets of project-

specific requirements from one methodology to another.

Mapping is required for any pair of methodologies that generally contain

differences in their defining XML schema, even in portions of the XML schema

that both represent the same requirements/specifications. Its main use is to guide

the transformation of UE requirements into SE specifications. It can also be used to

guide the transformation of the UE requirements of one project into UE requirements

for another project, where the two projects have their own customized methodology

records/schema.

The Methodology Mapping Tool (MMT) is used by a methodology developer to

analyze and compare semantics of a (UE) source XML schema (e.g., the PUF XML

schema – PUF XSD) and the semantics of a target XMI schema (e.g., UML XSD), as

illustrated in Figure 5.3. The MMT then produces a set of mapping rules that can be

used by the Methodology Translation Tool (MTT).

There are a number of different mapping needs that the MMT handles. Mapping

needs to occur both on an entity-to-entity basis and on an attribute-to-attribute basis.

www.manaraa.com

XML-BASED TOOLS 93

Table 5.2 MAT-created XML for a PUF Task Record’s Linkage Information Section

PUF Header PUF XML tags
Linkage
Information
Who

What

How

With which

(content)

Scenarios

<section> <number>2</number>
<sectionheading>Linkage Information</sectionheading>
<question link > <number>2.1</number>
<questionheading>who</questionheading>
<questionText>Who performs this task?</questionText>
<linkage>Linkage data goes here</linkage>
<linkage>for as many linkages as there are. </linkage>

< /question link>
<question link > <number>2.2</number>
<questionheading>what</questionheading>

<questionText>What subtasks does this task

have?</questionText>
<linkage>Linkage data goes here</linkage>
<linkage>for as many linkages as there are. </linkage>

< /question link>
not shown in this example:
how is done similar to structure for who
with which content also is done similar to structure for who
scenarios also is done similar to structure for who
< /section>

Figure 5.3 The interactions of the Methodology Mapping Tool

www.manaraa.com

94 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 5.3 PUF UML tags and their relationship to UML

PUF XML tag Purpose
<section>

allows mapping to consider one section at a time

is not generally mapped into UML, but may help identify

locations in UML where PUF data should be mapped to

<number>
used to structure PUF, but not UML records

is not mapped into UML

<question simple>
contains a single tag and piece of data to be mapped

<question multi>
contains a single tag and multiple pieces of data to be

mapped

<question link >
contains a single tag and one or more links to additional data

to be mapped

<questionheading>
data to this generic tag provides semantics which can act as

a tag for specific types of requirement data

the data to this tag will be mapped

this data may appear as a heading or subheading in a result-

ing UML diagram

<questionText>
used only for UEDT

<answer>
data to this generic tag contains requirement data

the data to this tag will be mapped

<linkage>
data to this generic tag provides linkages to other types of

PUF records that contain related data

the data to this tag will be mapped

<sub section>
(not illustrated in Ta-

bles 5.1 or 5.2)

primarily used to provide headings in UEDT for organizing

multiple questions

is not generally mapped into UML, but may help identify

locations in UML where PUF data should be mapped to

the data to this tag could be mapped if this data should ap-

pear as a heading or subheading in a resulting UML diagram

www.manaraa.com

XML-BASED TOOLS 95

5.4.1 Entity and Attribute Mappings

Specifications typically consist of a large number of instances of relatively few types

of specification records (templates). For example, PUF contains multiple user, task,

content, tool, and scenario records. Likewise, UML consists of a limited number of

entities (including: use cases, object classes, attributes, operations, actors) that are

then diagrammed in one or more diagrams. Mapping on an entity-to-entity basis is

essential to preserving the individual instances of each entity. Table 5.4 contains some

high-level mappings of PUF record types to UML entities that were identified in Carter

et al. (2005).

Table 5.4 Some high-level mapping of entities from PUF to UML

For every xxxx
identified in PUF . . .

. . . there should be a yyyy
created in UML

user actor

task essential use case

scenario use case

content attribute

tool operation

Entities in most methodologies are expected to have unique names. As illustrated

in Table 5.1, the Identification Information section of PUF record templates (created

by MAT) identifies the type of PUF record and contains a question designed to allow

project developers to name individual records. These names can be used to direct the

mapping, as described in Table 5.5.

The names of different types of specifications are also important when used as the

answers to questions asking about links. For example, PUF content and tools corre-

spond to attributes and operations in UML classes. The relationship between specific

content and tool records needs to be mapped to the specific relationship between spe-

cific attributes and operations.

Attribute-to-attribute mapping occurs within the entities selected by entity-to-entity

mapping. Attribute-to-attribute mappings can involve the attribute being mapped: di-

rectly to an existing target attribute, to a part of an existing target attribute, or as a new

target attribute.

Where an attribute maps directly to an existing target element (within UML), it

needs to have its data placed in that corresponding (UML) element. For example, PUF

task names map to name attributes in UML Use Case tags as illustrated in Table 5.6.

Where an attribute maps directly to part of an existing element (within UML), it

needs to have its data placed in a subelement of that corresponding (UML) element.

For example, answers about what this task consists of in PUF task descriptions map to

lower-level Use Cases, as illustrated in Table 5.7.

www.manaraa.com

96 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 5.5 High-level mapping of PUF tasks to UML actors

PUF XML Desired Result of Mapping
<question simple>
<number>1.1</number>
<questionheading>type</questionheading>
<answer>task </answer>

< /question simple>

This requires mapping to (including the

creation, where necessary) a UML actor
record for each instance of a PUF task
(type of) record.

<question simple>
<number>1.2</number>
<questionheading>name</questionheading>
<answer>Answer data goes here </answer>

< /question simple>

The name of the UML actor records will

be taken from the answer to question 1.2

of the PUF task records.

If no UML actor record exists with that

name, then it will have to be created.

Table 5.6 Direct attribute-to-attribute mapping of PUF to UML

PUF XML UML XML
(part of a PUF task record)

<question simple>
<number>1.2</number>
<questionheading>
name

< /questionheading>
<answer> paying for ordered
items using e-Commerce

</answer></question simple>
<question multi>
<number>1.3</number>
<questionheading>
description

< /questionheading>
<answer> paying for an order of items
already selected and currently in the
customer’s virtual shopping cart.

< /answer>
< /question multi>

<UML:UseCase xmi.id=”” name
=”paying for ordered items using
e-Commerce” isSpecification =””

isRoot=”” isLeaf =”” isAbstract=””>
. . .
<UML:eAnnotations> paying for an
order of items already selected and
currently in the customer’s virtual
shopping cart. </UML:eAnnotations>
. . .
< /UML:UseCase>

www.manaraa.com

XML-BASED TOOLS 97

Where an attribute does not correspond to an existing element (within UML), it

needs to have its data placed at the appropriate location (within UML). For example,

environmental data from PUF tasks needs to become a new type of constraint in UML,

as illustrated in Table 5.8.

Table 5.7 Attribute-to-attribute part mapping of PUF to UML

PUF XML UML XML
(continuing from example in Table 5.6)

<question link>
<number>2.2</number>
<questionheading>

what

</questionheading>
<questionText>

What subtasks does this task have?

</questionText>
<linkage>

enquiring about order status
</linkage>
<linkage>

ordering selected items
</linkage>

< /question link>

(as in Table 5.6 with additions)

<UML:UseCase xmi.id=”” name =”

paying for ordered items using
e-Commerce’ isSpecification =””

isRoot=”” isLeaf =”” isAbstract=””>
. . .
<UML:ownedUseCase xmi.id =“N”

name=”enquiring about order
status”> </UML: ownedUseCase >
<UML:ownedUseCase xmi.id = “M”

name=”ordering selected items”¿

< /UML: ownedUseCase >
. . .
< /UML:UseCase>

5.4.2 Multiplicity of Mappings

Because different methodologies can involve very different structures of

requirements/specifications, there are many possible mapping situations that may

arise. The MMT is intended to handle a wide range of possible mapping situations.

When dealing with relationships between two types of data, it is important to con-

sider the multiplicity involved in the relationships. Multiplicity denotes the number of

source and target entities (or attributes) involved in the relationship. The relationships

between two types of methodologies can involve at least four possible types of mul-

tiplicity: one-to-one, one-to-many, many-to-one, and many-to-many. The examples

in Tables 5.6–5.8 demonstrate a few of these multiplicity types when mapping UE

requirements to SE specifications.

One-to-one mappings are relatively simple to specify and implement since there

is no ambiguity as to what is being mapped. Table 5.4 specifies some one-to-one

mappings between PUF records and UML diagrams. Table 5.6 specifies a one-to-

one mapping between a PUF task name and a UML use case name. There may be

many individual answers to some PUF questions, each of which requires a one-to-one

www.manaraa.com

98 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 5.8 Attribute to new attribute mapping of PUF to UML

PUF XML UML XML
(continuing from example in Table 5.5)

<section> <number>2</number>
<sectionheading>
Environmental Information

< /sectionheading>
<question multi>
<number>3.1</number>
<questionheading>
when

< /questionheading>
<questionText>
When is this task performed?

</questionText>
<answer>

performed after ordering selected items
</answer>
</question multi>

</section>

<UML:Constraint xmi.id=”” name

=””>
<UML: constraintedElement> paying

for ordered items using e-Commerce
< /UML: constraintedElement>

. . .
<PUF: when> performed after ordering
selected items
</PUF: when>
. . .

mapping. For example, the answers to the “what” question in Table 5.7 reference two

PUF tasks. Redundant one-to-one mappings would occur if we naively created one-

to-one mappings between every PUF task reference and its corresponding UML use

case. To avoid this, it is important to consider the semantics involved when creating

the mapping rules. For example, when a PUF task is referenced in a “what” answer, it

denotes a structural relationship between tasks and this structural relationship needs to

be maintained in the UML. A one-to-one mapping actually means that every instance

of some type of data in the source maps to a unique instance of some other type of data

in the target. Thus, the structural mapping of each answer to the question “what” is an

example of a one-to-one mapping. The mapping of each line of a PUF task description

to its own UML:eAnnotations is also an example of a one-to-one mapping.

Handling one-to-many mappings is also relatively straightforward, since the one-

to-one mapping can be repeated many times, using the same source entity and identify-

ing different target entities. While this increases the number of mapping rules, it does

not increase the complexity of the mapping. Although no examples of one-to-many

mappings occur for PUF and UML, the MMT can handle one-to-many mappings if

instances of it are identified when relating other methodologies.

A many-to-one mapping is more complex to handle, since it can involve two dif-

ferent results, depending on whether the ‘many’ source entities are redundant or dif-

ferent. If two different source attributes are redundant (as in two different sources of

www.manaraa.com

XML-BASED TOOLS 99

task names both mapping to the name of a UML use case), then only a single one-

to-one mapping is actually needed (unless, as discussed above, the different instances

of task names have different purposes). When two sources containing different data

are mapped to the same target attribute, it is important that both pieces of data are re-

tained. It may also be useful to specify the ordering of how data from these two sources

is placed into the target attribute. This ordering can easily be done within MMT, by

selecting the exact location within target XML that any given mapping leads to.

Applying many-to-one mappings can lead to a target specification produced by the

MTT containing conflicting specifications. In order to help the user of the resulting

specifications, it may be useful that the source of each of the multiple requirements be

identified as reference information along with the text. While this source information

could clutter a UML diagram, the diagramming tool need not render this information

as part of the diagram. It could, however, make this reference information available

in interactive mode to the developer using the tool, either in a pop-up when scrolling

over the associated specification or as a link into the UE requirements that have been

translated as a basis for the UML diagram. However, if some reference information is

to be included in the mapping, then all reference information should be included (since

many-to-one mappings often start out as one-to-one mappings that are later added to

by another one-to-one mapping to the same target attribute). In order to accommodate

this information, the MMT can optionally create references for all source requirements

using <UEref> tags in a manner similar to HTML <href> tags.

Many-to-many mappings can often be separated into sets of one-to-one, one-to-

many, and/or many-to-one mappings. Since no examples of many-to-many mappings

have been identified that cannot be separated, the MMT does not provide support for

many-to-many mappings.

5.5 TRANSLATING BETWEEN XML-BASED UE REQUIREMENTS

INTO SE SPECIFICATIONS

Translation makes use of mapping information to automatically transform UE speci-

fications into SE requirements. The Methodology Translation Tool (MTT) is used by

a project developer (either a usability engineer or a software engineer) to translate UE

project data using the source XML schema (e.g., the PUF XML schema – PUF XSD),

the target XMI schema (e.g., UML XSD), and the mapping between these schemas

(e.g., the mapping of PUF to UML). The result of the mapping is both a version of

the data that can be used by the target methodology (e.g., UML-PUF data) and an

enhanced target XMI schema that describes how this data should be treated by the

target methodology (e.g., PUF augmented XMI schema). This enhanced schema is

necessary in order to explain how to interpret any new tags that have been added to

accommodate attributes from the source methodology that did not directly translate

into attributes of the target methodology. These interactions involving the MMT are

illustrated in Figure 5.4.

www.manaraa.com

100 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 5.4 Basic interactions of the Methodology Mapping Tool

5.5.1 Adding Integration to Translation

The current MTT is designed to be used to translate PUF (UE) requirements that have

been obtained at the start of a project into UML specifications that can be used as a

starting point for software engineers developing a project. It is desirable to enhance the

capabilities of the MTT so that it can be used to integrate UE requirements throughout

the development lifecycle with various types of preexisting data.

The current MTT does not have to deal with any preexisting UML data. It creates

new sets of SE specifications (UML-PUF data), involving UML tags, UML-PUF tags,

and PUF data inserted within these tags. It also creates a new PUF augmented XMI

schema that describes how to use these tags. Figure 5.5 illustrates an integration and

translation tool (ITT) that could be used to deal with all combinations of preexisting

XML-based requirements and specifications.

Figure 5.5 An integration and translation tool

www.manaraa.com

XML-BASED TOOLS 101

There are two main situations where integration of UE requirements with existing

SE specifications could occur: where only UML data exists and where UML-PUF data

exists.

Both situations need to rely on matching high-level entity names in source and

target data. For integration to be effective, UEs and SEs need to use a shared set of

entity names (e.g., shared names for UE “users” and SE “actors”). Otherwise, the

target data will contain multiple records, that each partially describes some entities.

While the MTT provides automatic translation, it is likely that an ITT will require

some level of developer interaction to ensure that these names are properly mapped.

UML data can be expected to already exist where UE is not the only activity done

at the start of a project. Although Carter et al. (2005) advocate having UE create the

initial set of requirements for SE, as a means of getting the value of UE accepted in

project, this is not a usual occurrence in current projects. Thus, it is important that the

enhanced ITT operations support the insertion of UE requirements in any point within

the development lifecycle.

Integrating UE source requirements into an existing set of SE target specifications

works like many-to-one mapping, in that it is based on whether or not a suitable target

tag exists. Integration starts with creating an enhanced target XMI schema as is done

when target specifications do not already exist (e.g., from a source (PUF) XML schema

and a target (XMI) schema). Integration then copies existing target (e.g., UML) data

to form the basis of the enhanced target data. The final, and most complex integration

operation involves using this enhanced target data to determine the appropriate entities

and appropriate locations within these entities for adding new (e.g., UML-PUF) tags

and new source (e.g., PUF) data to the enhanced target data.

Once the target XMI document involves both UE and SE data, adding further UE

source data becomes a more complicated operation. While iteration of both UE and

SE data is important, it is likely that at this point the combined data is under the control

of SEs using tools that focus on adding SE-related data.

The previously existing enhanced target XMI schema now becomes the target XMI

schema used to create a new enhanced target schema. This target XMI schema may

have most or all of the UE enhancements it already needs to accommodate new UE

source data. However, there may need to be some enhancements to accommodate

source XML that was not needed previously in translation and integrations.

Likewise, the existing enhanced target data now becomes the target data used with

the source data, the schema, and mapping rules to create a new set of enhanced target

data. Again, this may contain most of the data found in the source data (which has

been iterated by the UE).

In order to accommodate new UE data, integration will have to compare the new

set of UE source data with existing UE data in the set of enhanced target data. There

are two possible types of source data that require different types of processing: partial

source data and iterated source data.

UE requirements should not need to be complete sets of requirements that are

merged together before being used as source data. Large projects may be divided

in separate subprojects each of which has its own set of requirements. When dealing

with partial requirements, integration should only process additions to the existing tar-

www.manaraa.com

102 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

get data (making use of common data that already exists in both the target and source

data).

Iterated source data contains the complete set of current UE requirements, and as

such may require additions, modifications, and even deletions to this target data. Given

the destructive nature of modifications and deletions, processing iterated source data

should not be fully automated.

5.5.2 Visualizing and Working with the Results

The MTT currently uses Carlson’s (2003) hypermodel modeling tool to generate UML

object models from existing XMI documents or UML-PUF XSD. The generated UML

object model showcases the structure of the XMI files using objects, attributes, opera-

tions, and relationships. To many people, a concise UML class diagram is the best way

to get an overview of XML vocabulary models, which are most frequently published

using the W3C XML Schema language (Carlson, 2001).

While the hypermodel tool does not meet the needs of integrating all UE require-

ments into SE specification and development, it does provide a proof of concept for

our approach. However, it does not yet support diagram interchange, making exchang-

ing files between UML modeling tools using XMI rarely possible. It is anticipated that

in the future, more powerful UML tools will make use of XMI-based specifications.

XMI has been adopted as the format for UML model interchange.

To address XMI’s deficiency in modeling graphical information, UML 2.0 Diagram

Interchange (Object Management Group, 2006a) extends the UML XMI format by al-

lowing graphical elements to be expressed in an XMI representation of geometrical

concepts such as node, edge, and connector. UML 2.0 Diagram Interchange allows

the exchange of UML models with graphical diagrams via XMI. It supports present-

ing UML diagrams within a browser using SVG. To do so, EXtensible Stylesheet Lan-

guage Transformations (XSLT) is adopted to transform the XML graphical elements

into SVG format so that SVG-compliant tools can display the UML diagrams.

5.6 CONCLUSION

In this chapter we introduced research under way that deals with developing UE meth-

ods and methodologies, especially the PUF methodology and the CAP method. We

described a set of XML-based and XMI-based tools for creating, mapping, transform-

ing (translating and integrating) sets of UE requirements and SE specifications. These

tools can be used to better integrate UE within software engineering controlled devel-

opment projects, and to help develop accessible software systems. We also recognize

a need for improvements to the SE tools that make use of XMI-based specifications,

in order for this integration to be fully accomplished.

References

Adams, R., Bass, L., and John, B. (2006). Experience with using general usability

scenarios on the software architecture of a collaborative system. In (Seffah et al.,

2005), pages 87–110.

www.manaraa.com

XML-BASED TOOLS 103

Carlson, D. (2001). Modeling XML applications with UML : practical e-business ap-
plications. Addison-Wesley, Reading: MA.

Carlson, D. (2003). http://www.xmlmodeling.com/.

Carter, J. A. (1999). Incorporating standards and guidelines in an approach that bal-

ances usability concerns for developers and end-users. Interacting with Computers,

12(2):179–206.

Carter, J. A., Liu, J., Schneider, K., and Fourney, D. (2005). Transforming usability

engineering requirements into software engineering specifications: From PUF to

UML. In (Seffah et al., 2005), chapter 9, page 391.

Cortellessa, V. and Pompei, A. (2004). Towards a uml profile for qos: a contribution

in the reliability domain. In Proc. Fourth International Workshop on Software and
Performance (WOSP-04), pages 197–206.

Cysneiros, L. M. and Sampaio do Prado Leite, J. C. (2001). Using UML to reflect

non-functional requirements. In CASCON ’01: Proceedings of the 2001 Conference
of the Center for Advanced Studies on Collaborative Research, Toronto, Ontario,

Canada. IBM Center for Advanced Studies.

Fourney, D. and Carter, J. A. (2006). A standard method of profiling the accessibil-

ity needs of computer users with vision and hearing impairments. In CVHI 2006
Conference and Workshop on Assistive Technologies for Vision and Hearing Im-
pairment, EURO-ASSIST-VHI-4, Kufstein, Austria.

Gaffar, A. and Seffah, A. (2005). An XML multitier pattern dissemination system.

In Rivero, L. C., Doorn, J. H., and Ferraggine, V. E., editors, Encyclopedia of
Database Technologies and Applications, pages 740–744. Idea Group, Montreal.

Huang, F. (2006). Method for translating and linking XML-based specifications be-

tween development methodologies. In Proc. 2006 Graduate Symposium, Depart-
ment of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada.

ISO (2005). Information technology—XML metadata interchange specification.

ISO/IEC PAS 19503, 116 pages.

ISO (2006a). Ergonomics of human-system interaction—accessibility guidelines for

information/communication technology (ICT) equipment and services. ISO DIS

9241-20, 22 pages.

ISO (2006b). Ergonomics of human-system interaction—guidance on software acces-

sibility. ISO DIS 9241-171, 83 pages.

ISO (2006c). Software engineering—metamodel for development methodologies. ISO

FDIS 24744, 78 pages.

ISO (2007). Information technology—framework for specifying a common access

profile (CAP) of needs and capabilities of users, systems, and their environments.

ISO/IEC FDIS 24756, 30 pages.

ISO/IEC (1998). ISO/IEC 9241-14: Ergonomic requirements for office work with vi-
sual display terminals (VDT)s—Part 14 Menu dialogues. ISO/IEC 9241-14: 1998.

Jagne, J. and Smith-Atakan, A. S. (2006). Cross-cultural interface design strategy. Uni-
versal Access in the Information Society. online-first version, DOI 10.1007/s10209-

006-0048-6, 7 pages.

www.manaraa.com

104 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Jerome, B. and Kazman, R. (2005). Surveying the solitudes: An investigation into

the relationships between human computer interaction and software engineering in

practice. In (Seffah et al., 2005), chapter 6, page 391.

Object Management Group (2006a). Diagram interchange, v1.0. http://www.omg.org/

technology/documents/formal/ diagram.htm.

Object Management Group (2006b). UML 2.1 XSD files. http://www.omg.org/cgi-

bin/doc?ptc/2006-04-05.

Savadis, A. and Stephanidis, C. (2004). Unified user interface development: the soft-

ware engineering of universally accessible interactions. Universal Access in the
Information Society, 3:165–193.

Seffah, A., Gulliksen, J., and Desmarais, M. C., editors (2005). Human-Centered Soft-
ware Engineering: Integrating Usability in the Development Process. New York:

Springer-Verlag.

Seffah, A. and Metzker, E. (2004). The obstacles and myths of usability and software

engineering. Commun. ACM, 47(12):71–76.

Titus, J. (2006) Building an Administration CASE Tool for CASE Tools, Department

of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada, unpub-

lished report, 17 pages

University of California (2007). http://argouml.tigris.org/features.html.

Wolinski, A. (2003). Developing a CASE Tool for the Putting Usability First Method-

ology Department of Computer Science, University of Saskatchewan, Saskatoon,

SK, Canada, unpublished report, 17 pages

Zhang, Q. and Eberlein, A. (2003). Architectural design of an intelligent requirements

engineering tool. In Proceedings of Canadian Conference on Electrical and Com-
puter Engineering, volume 2, pages 1375 – 1378, Montreal, Canada.

www.manaraa.com

II Modeling and Model-Driven
Engineering

www.manaraa.com

6 MULTIPATH TRANSFORMATIONAL

DEVELOPMENT OF USER INTERFACES

WITH GRAPH TRANSFORMATIONS
Quentin Limbourg* and Jean Vanderdonckt**

*SmalS-MvM

Av. Prince Royal, 102 – B-1050 Brussels, Belgium.

**Belgian Laboratory of Computer-Human Interaction (BCHI),

Louvain School of Management (LSM),

Université catholique de Louvain

Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium.

Abstract. In software engineering, transformational development is aimed at devel-

oping computer systems by transforming a coarse-grained specification of a system to

its final code through a series of transformation steps. Transformational development

is known to bring benefits such as: correctness by construction, explicit mappings be-

tween development steps, and reversibility of transformations. No comparable piece

exists in the literature that provides a formal system applying transformational devel-

opment in the area of user interface engineering. This chapter defines such a system.

For this purpose, a mathematical system for expressing specifications and transforma-

tion rules is introduced. This system is based on graph transformations. The problem

of managing the transformation rules is detailed, e.g., how to enable a developer to

access, define, extend, restrict or relax, test, verify, and apply appropriate transforma-

tions. A tool supporting this development paradigm is also described and exemplified.

Transformational development, applied to the development of user interfaces of inter-

107

www.manaraa.com

108 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

active systems, allows reusability of design knowledge used to develop user interfaces

and fosters incremental development of user interfaces by applying alternative trans-

formations.

6.1 INTRODUCTION

A recent survey of the area of Human-Computer Interaction (HCI) compared to the

area of Software Engineering (SE) would find the former to be mainly empirical,

experience-based, and relying on implicit knowledge and the latter to be notoriously

and deliberately structured, principle-based, and relying on explicit knowledge. The

development lifecycle of highly-interactive systems in general and of their User Inter-

face (UI) in particular form the cornerstones of HCI, which has been observed to suffer

from several shortcomings that are intrinsic either to the type of interactive systems

being developed or to the existing practices used. Among these shortcomings are the

following observations:

Lack of rigorousness: on the one hand, the development lifecycle of interactive

systems cannot be based on the same rigorous models that are typically used in

SE (Brown 1997). On the other hand, HCI lifecycle is submitted to a high order

of complexity that is neither reflected nor well supported in existing models and

methods (Wegner 1997).

Lack of systematicity: as SE aimed for a well-structured method for developing

highly complex systems, so did HCI for developing interactive systems. How-

ever, the systematicity and the reproducibility found in SE methods cannot be

transferred straightforwardly to HCI: the development lifecycle remains intrin-

sically open, ill-defined, and highly iterative (Sumner et al. 1997) as opposed to

the domain of SE where it is structured, well-defined, and progressive (D’Souza

and Wills, 1999).

Lack of a principle-based approach: where SE proceeds in the development

from one step to another according to well-established principles, in contrast

HCI usually advances in a more opportunistic way when the current result is

usable enough to proceed to the next step (Bodart et al., 1995; Puerta, 1997).

Lack of explicitness: not only the knowledge required to properly conduct the

development lifecycle of interactive systems is not as principled as in SE, but

also it is implicitly maintained in the mind of experienced designers. This

knowledge is therefore harder to communicate from one person to another,

although initiatives exist that make this knowledge more explicit through de-

sign patterns, usability guidelines. Even more, when this knowledge is made

more explicit, nothing can guarantee that it is applied uniformly and consistently

within a same development project or across various development projects.

The aforementioned comparison holds as long as significant efforts toward structured,

principle-based, and explicitly based process devoted in SE remain unparalleled with

the area of HCI. This chapter seeks to contribute to reestablish a balance between HCI

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 109

and SE regarding this aspect by providing an effort in the direction of a true develop-

ment process for UI engineering with the same quality factors that are usually found in

SE. For this purpose, it is expected that a model-driven approach of UI development

could represent an engineering effort attempting to systematize UI development. It

does so by constructing high-level requirements and, progressively, transforms them

to obtain specifications that are detailed and precise enough to be rendered or trans-

formed into code. This type of approach is referred to in the SE literature as the

transformational approach. More recently, along with the Model Driven Architecture

(OMG, 2006) proposal (Miller and Mukerij, 2003), model processing and transforma-

tion has gained a particular importance in the software engineering literature (Rensik,

2003; Kuske et al., 2002; Gerber et al., 2002).

Several ingredients are lacking in existing HCI methods to fully achieve a transfor-

mational approach in the development of UI. Conceptually, there is no systematic un-

derstanding of the relationships among all development artifacts (i.e., models) needed

to build a UI. Furthermore, the design knowledge required to feed these models and to

make them smoothly evolve over time from one development step to another is often

implicitly maintained in the minds of developers and designers and/or hard-coded in

supporting software. When such design knowledge exists, it is not always systemati-

cally, consistently, and correctly applied throughout the project or across projects.

Sumner et al. (1997) explain that the development process, as usually conducted in

HCI, is a process that is eminently open (several development steps can be conducted

or considered simultaneously), ill-defined (the initial requirements are usually largely

incomplete, if not inconsistent), and mostly iterative (it seems impossible to conduct a

development step in such a way that its outputs are definitive).

Nanard and Nanard (1995) report that the development lifecycle of an interac-

tive application consists of a sophisticated Echternach process that does not always

proceed linearly in a predefined way. It is rather an interwoven set of development

steps, which alternate bottom-up and top-down paths, with selecting, backtracking,

and switching among several actions. Thus any method and development tool is ex-

pected to effectively and efficiently support a flexible development lifecycle, which

does not stiffen the mental process of expert designers in a fixed procedural schema.

On the other end, when we consider the needs of moderately experienced designers,

the method and its supporting tool should enforce a minimum number of priority con-

straints. These constraints should define which development artifacts must be specified

before others, suggesting for example how and when to proceed from one development

step to another.

The variety of the approaches adopted in organizations and the rigidity of exist-

ing solutions provide ample motivations for a UI development paradigm that is flex-

ible enough to accommodate multiple development paths and design situations while

staying precise enough to manipulate information required for UI development. To

alleviate these problems, a development paradigm of multipath UI development is

introduced that is characterized by the following principles:

Expressiveness of UI: any UI is expressed depending on the context of use via

a suite of models that are analyzable, editable, and manipulable by software

(Puerta, 1997).

www.manaraa.com

110 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Central storage of models: each model is stored in a model repository where

all UI models are expressed according to the same UI Description Language

(UIDL).

Transformational approach: each model stored in the model repository may be

subject to one or many transformations supporting various development steps

(Eisenstein et al. 2001).

Multiple development paths: development steps can be combined together to

form development paths that are compatible with the organization’s constraints,

conventions, and context of use. For example, a series of transformations may

derive a presentation from a task model.

Flexible development approaches: development approaches are supported by

following alternate development paths (Nanard and Nanard, 1995) and enable

designers to freely shift between these paths depending on the changes imposed

by the context of use (Calvary et al., 2003).

To address the above requirements, this chapter presents a method for expressing mod-

els that are relevant to HCI, but expressed in an SE way so that HCI development

paths can be supported with a level of flexibility that is desired in HCI, while keep-

ing the rigorousness brought by SE. For this purpose, the present chapter is structured

as follows: Section 6.2 presents existing work that is related to the issue of struc-

turing the HCI development process via the model-based approach similarly to what

MDA is doing in SE. Section 6.3 introduces and motivates the choice of graph gram-

mars and graph transformations to ensure a transformational approach guaranteeing

expressiveness and flexibility. The methodology introduced in this chapter supports

model transformation based on these concepts. Section 6.4 analyzes how traditional

development approaches found in SE can be addressed in a parallel way in HCI by

identifying a series of levels of abstractions between which transformations can be

applied. Throughout this section, ample examples of design knowledge manipulated

at each level are provided. Section 6.5 summarizes the main benefits brought by our

methodology and perceived shortcomings.

6.2 RELATED WORK

Model-Based Approach of User Interface (MBAUI) has been around for many years,

basing its power on models in order to develop interactive systems. MBAUI can be

assimilated to a larger trend in software engineering called the transformational devel-

opment paradigm. Its modus operandi resides in the performance of model-to-model

transformations to support model engineering activities of UI development. To pro-

vide relevant concepts and a stepwise development cycle is essential in the definition

of a development lifecycle. Support for a developer in accomplishing development

steps is also highly desirable. In the context of MBAUI, the nature of the support pro-

vided to a developer can consist for multiple elements (Puerta, 1997): a simple syntax

editor, a graphical model editor, a well-furbished and exemplified documentation sys-

tem, a structured knowledge base, a model derivation module, a model analyzer, and

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 111

a code generator. Such a methodology combining all these advantages does not exist

today.

Historically, MBAUI has exploited models of various types and for various uses.

MECANO (Puerta, 1996) automatically generates presentation and dialog models as

intermediary steps toward a NeXT GUI from a domain model expressed in an object-

oriented language. JANUS (Balzert et al. 1996) exploits relationships such as inher-

itance, aggregation and generalization of a domain model to deduce a UI structure.

GENIUS (Janssen et al. 1993) derives UI code from an extended entity-relationship

model and, so called, dialog nets based on Petri nets. MOBI-D (Puerta, 1997) uses as

input scenarios, a task model and a domain model to automatically generate a GUI.

MOBI-D is equipped with a module called TIMM learning from a designer’s choices

to sharpen a widget selection process.

TEALLACH (Griffiths et al., 2001) allows designing database UIs while allowing

co-evolutionary design of a user’s task model design is the first tool to integrate ex-

plicitly in the design process the concept of model mapping. More recently tools like

ARTSTUDIO (Thevenin, 2001) or TERESA (Mori et al. , 2004) exploited the infor-

mation contained in a user’s task model, to derive context-specific presentation of a

UI.

All of the above-cited tools and methods perform some model mapping and trans-

formation, somehow. None of them provides an explicit mechanism to represent and

manipulate heuristics (or patterns) governing the model transformation process. Some

tools do involve some transformational mechanism, but it is built-in so that their mod-

ifiability is impossible.

MBAUI is suffering from a bottleneck in the consolidation and dissemination of the

knowledge used to realize model transformation. From this statement we may define

two requirements to fill our research agenda:

Core requirement 1: an easy-to-understand and uniform description of models

subject to transformation. This description would cover various viewpoints on

a UI system.

Core requirement 2: an explicit formalism to specify and perform UI model

transformations.

6.3 EXPRESSING THE UI DEVELOPMENT CYCLE WITH GRAPH

TRANSFORMATIONS

Developing a UI according to an MBAUI philosophy can be seen as an activity of

transforming a high-level specification into a more concrete specification (or code).

Unfortunately, no generic solution has been proposed to address the problem of defin-

ing a computational framework for expressing, manipulating, and executing model

transformation involved in engineering approaches to UI construction. To achieve this

goal, several requirements have been identified (Limbourg and Vanderdonckt, 2004a,

2004b):

A definition of each manipulated artifact capturing different viewpoints neces-

sary to UI development.

www.manaraa.com

112 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

A definition of relationships between different viewpoints. These relationships

are essential in order to obtain an integrated view of a specification.

A representation of the knowledge needed to perform model-to-model transfor-

mations.

A mechanism to manipulate the knowledge to perform a derivation. UI model

derivation is heuristic by nature. A satisfactory solution implies at least a possi-

bility, for a developer, to choose between different derivation heuristics. Ideally,

a developer should be able to alter or redefine these heuristics.

A mechanism to check desirable properties on derived models. These properties

might be consistency, correctness, or usability.

6.3.1 Approaches for Model Transformation

In the next paragraphs we survey a number of existing techniques and evaluate their

relevance to our goal. Imperative languages provide a means to perform model trans-

formation:

Text-processing languages like Perl or Awk are popular for performing small

text transformation. These tools cannot be considered to specify complex trans-

formation systems as they force the programmer to focus on very low-level syn-

tactic details.

Several environments provide APIs to manipulate and transform models and, of-

ten, their corresponding to specific metamodels: Jamda (Boocock, 2003), UM-

LAUT (Ho et al., 1999), dMof (Queensland University, 2002).

Relational approaches (Akehurst et al., 2003; Gerber et al., 2002) rely on the specifi-

cation of mappings between source and target element types along with the conditions

in which a mapping must be instantiated. Mapping rules can be purely declarative,

and non executable, or executable thanks to a definition of an execution semantic.

Relational approaches are generally implemented using a logic-based programming

language and require a clear separation of the source and target model.

XSLT transformations are a good candidate as models have, generally, a syntac-

tical representation in an XML-compliant format. The way XSLT proceeds is very

appealing as it (1) searches for matches in a source XML document (2) executes a set

of procedural instructions, when a match is found, to progressively construct a target

XML file. Unfortunately, some experiences (Gerber et al., 2002) showed that XSLT

transformations are not convenient to compute model transformation for two main rea-

sons (1) their verbosity has been identified as a major problem to manage complex sets

of transformation rules (2) their lack of abstraction: progressively constructing a target

XML file entails an inclusion, in transformation rules, of syntactic details relative to

the target file.

Common Warehouse Metamodel (CWM) Specification (Object Management

Group, 2003) provides a set of concepts to describe model transformation.

Transformations can be specified using a black box or a white box metaphor.

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 113

Transformations are grouped in transformation tasks (some meaningful set of

transformations), which are in turn themselves grouped in transformation activities.

A control flow of transformation can be defined between transformation tasks at this

level (with the concept of transformation step). Even if transformations allow a

fine-grained mapping between source and target element, CWM does not provide a

predefined language to specify the way these elements are transformed one to another.

Graph grammars and graph transformations have been used for many years to rep-

resent complex transformation systems. It has been used notably in the software en-

gineering field for representing, for instance: software refactoring (Mens et al., 2001),

software evolution (Heckel et al., 2002), multiagent system modeling (Depke et al.,

2002), modeling language formalization (Varro et al., 2002). Graph grammars have

been proved an ‘efficient in time’ formalism for specifying and computing any model-

to-model transformation (Agrawal et al., 2003). As main advantages to our approach,

graph transformation specification: (1) are rather declarative (they are based on graph

patterns expression) (2) provide an appealing graphical syntax which does not exclude

the use of a textual one (3) are executable thanks to an grounded execution seman-

tic based on push-out theory (4) offer modularity by allowing the fragmentation of

complex transformation heuristics into small, independent chunks. In the context of

UI development with graph transformations, two pioneering work can be mentioned

(Freund et al., 1992; Sucrow, 1998). Both approaches make an interesting use of graph

transformations but have a too narrow conceptual coverage to address a fully defined

UI development cycle.

6.3.2 Our Methodology

Our methodology proposes a framework (Figure 6.1) coping with the development

of UIs for single and multiple contexts of use. To achieve this goal, this methodology

relies on a set of models structured in four levels of abstraction: (1) an implementation

level contains UI code. The UI code is generated from models contained at the model

level (2) a model level contains models developed for an actual system. A model

at model level is an instance of a meta-model at meta-model level (3) a meta-model

level contains a definition of all concepts needed to build UI models (4) a meta-meta

model level contains the basic structure definition used to define the meta-model (and

transitively, the model level), i.e., a directed, attributed, labeled graph structure.

In a model-based approach of UI development, a designer’s task consists mainly in

defining models and producing UI code according to these previously defined models.

At each phase of the development cycle, specific artifacts are defined; these artifacts

correspond to, so called, viewpoints on the system. We propose four viewpoints on UI

systems:

1. Computation-independent viewpoint contains elements enabling the description

of a UI system independently of any computer-related considerations. This

viewpoint is composed of a task model and domain model. A task model is

a hierarchical decomposition of the tasks to be carried out by a user to achieve

her goal. After a comparison of a dozen task modeling techniques (Limbourg

and Vanderdonckt, 2003), an altered version of ConcurTaskTree (CTT) (Mori

www.manaraa.com

114 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 6.1 Overall framework of our methodology

et al., 2004) has been chosen to represent user’s tasks and their logical and tem-

poral ordering. CTT has been altered in the sense that a task taxonomy has been

introduced to better describe the nature of a basic task, leaf of a task decomposi-

tion. This taxonomy facilitates a mapping between tasks and interaction objects

supposed to support this task. A domain model contains domain-oriented con-

cepts as they are required by the tasks described in a task model. A domain

model describes the real-world concepts and their interactions as understood by

users (D’Souza and Wills, 1999). Our domain model is a UML class diagram

populated with classes, attributes, methods, objects (Larman, 2001). Concepts

contained in a domain model are at a certain point manipulated by systems users.

By manipulated, it is meant that domain concepts are at a certain point subject

of an exchange (an input or/and an output) between the user and the system.

Consequently, domain concepts can be mapped onto elements describing a UI

structure and behavior (e.g., abstract UI, concrete UI).

2. Modality-independent viewpoint contains elements that are independent of the

modality (e.g., graphical interaction, vocal interaction, speech synthesis and

recognition, video-based interaction, virtual, augmented, or mixed reality) in

which the UI they describe will be rendered. This viewpoint contains an Ab-
stract UI (AUI) specification. An AUI defines abstract containers by group-

ing subtasks according to various criteria (e.g., task model structural patterns,

cognitive load analysis, and semantic relationships identification), a navigation

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 115

scheme between the Abstract Containers (AC) and selects one or several Ab-
stract Individual Component (AIC) for each basic user’s task. Each “abstract

individual component” is attached to one or several facets describing its func-

tion in a UI. We identify four types of facets: input, output, navigation, and

control. Abstract interaction objects can be mapped onto: (i) a task or a set of

tasks they support, (ii) a domain class or a set of attributes they represent, (iii) a

concrete interaction object.

3. Platform-independent viewpoint contains a viewpoint that is (1) independent of

the computing platform for which the system will be implemented and (2) de-

pendent of a particular modality. This viewpoint contains a Concrete UI speci-

fication. A CUI concretizes an abstract UI for a given context of use. A CUI is

populated with Concrete Interaction Objects (CIOs) (Vanderdonckt and Bodart,

1993).

4. An implementation viewpoint is a viewpoint containing a coded UI i.e., any

UI running on a particular platform either by interpretation (e.g., through a

browser) or by execution (e.g., after compilation of code).

Three other models are defined in our framework: (1) an inter-model relationship

model, (2) a context model, and (3) a transformation model. These models do not

define any particular viewpoint but rather are needed in a UI development process at

every phase: (1) contains a set of mapping declarations linking elements belonging

to different viewpoints, (2) contains a description of all the context considered during

the development process, and (3) contains a set of rules enabling the transformation of

one viewpoint into another or to adapt a viewpoint for a new context of use.

Our viewpoint structuring can be compared (Figure 6.2) with respect to the Model-

Driven Architecture (MDA) proposal provided by the Object Management Group

(Miller and Mukerij, 2003). MDA proposes a set of concepts and methodological

recommendations to address the development of systems in a context characterized by

a diversity of evolving computing platforms. MDA viewpoints are: (1) a Computation-

Independent Model (CIM), sometimes called business model, shows a system in a way

that is totally independent of technology (typically a business class diagram in OO

methods). (2) A Platform-Independent Model (PIM) provides a view of the system

independently of any details of the possible platform for which a system is supposed

to be built. (3) A Platform-Specific Model (PSM) provides a view of a system that is

dependent on a specific platform type for which a system is supposed to be built. (4)

An implementation is a specification providing all details necessary to put a system

into operation.

6.3.3 Transformation Is the Name of the Game

Our methodology enables expressing and executing model transformation based on

UI viewpoints. Figure 6.3 illustrates the different kinds of transformation steps in our

framework:

Reification is a transformation of a high-level requirement into a form that is

appropriate for low-level analysis or design.

www.manaraa.com

116 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 6.1 A comparison of terms used in MDA and our methodology

Model-Driven
Architecture

Our methodology

Computing-

Independent

Model

Computation-independent viewpoint: task and domain models

Platform-

Independent

Model

(1) Modality-Independent viewpoint: Abstract UI model;

(2) platform independent viewpoint: Concrete UI

Platform-Specific

Model

Implementation viewpoint: UI Code

Platform Model Context Model

Abstraction is an extraction of a high-level requirement from a set of low-level

requirement artifacts or from code.

Translation is a transformation a UI in consequence of a context of use change.

The context of use is, here, defined as a triple of the form (E, P, U) where E
is an possible or actual environments considered for a software system, P is a

target platform, U is a user category.

Reflection is a transformation of the artifacts of any level onto artifacts of the

same level of abstraction, but different constructs or various contents (Calvary

et al., 2003).

Code generation is a process of transforming a concrete UI model into a com-

pilable or interpretable code.

Code reverse engineering is the inverse process of code generation.

The different transformation types are instantiated by development steps (each occur-

rence of a numbered arrow in Figure 6.3). These development steps may be combined

to form development paths. Development paths are detailed in Section 6.4. The con-

tent of Section 6.4 is detailed right of Figure 6.3).

While code generation and code reverse engineering are supported by specific tech-

niques (not covered in this chapter), we use graph transformations to perform model-

to-model transformations i.e., reifications, abstractions and translations.

The models have been designed with an underlying graph structure. Consequently

any graph transformation rule can be applied to any UI specification. Graph transfor-

mations have been shown convenient formalism (Limbourg and Vanderdonckt, 2004a,

2004b). The main reasons are (1) an attractive graphical syntax, (2) a clear execution

semantic, and (3) an inherent declarativeness of this formalism. Development steps

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 117

Figure 6.2 Transformations between viewpoints

are realized with transformation systems. A transformation system is a set of (indi-

vidual) transformation rules. A transformation rule is a graph rewriting rule equipped

with negative application conditions and attribute conditions (Rozenberg, 1997).

Figure 6.3 illustrates how a transformation system applies to a specification: let

G be a specification, when (1) a Left-Hand Side (LHS) matches into G and (2) a

Negative Application Condition (NAC) does not matche into G (note that several NAC

may be associated with a rule), and (3) the LHS is replaced by a Right-Hand Side

(RHS). G is resultantly transformed into G’, a resultant specification. All elements

of G not covered by the match are considered as unchanged. All elements contained

in the LHS and not contained in the RHS are considered as deleted (i.e., rules have

destructive power). To add to the expressive power of transformation rules, variables

may be associated to attributes within an LHS. Theses variables are initialized in the

LHS; their value can be used to assign an attribute in the expression of the RHS (e.g.,

LHS : button.name:=x, RHS : task.name:=x). An expression may also be defined to

compare a variable declared in the LHS with a constant or with another variable. This

mechanism is called attribute condition.

As shown in Figure 6.4, transformation rules have a common meta-model with our

models. Furthermore, to preserve the consistency of transformed artifact, resultant

UI models are checked upon their meta-model. Transformation rules resulting in a

non-consistent resulting graph are just not applied.

www.manaraa.com

118 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 6.3 A transformation system in our methodology

Figure 6.4 Framework for model transformations

6.4 DEVELOPMENT PATHS

Transformation types have been introduced in Section 6.3.3. These transformation

types are instantiated into development steps. These development steps may be com-

posed to form development paths. Several types of development paths are identified:

Forward engineering (or requirement derivation) is a composition of reifica-
tions and code generation enabling a transformation of a high-level viewpoint

into a lower-level viewpoint.

Reverse engineering is a composition of abstractions and code reverse engi-
neering enabling a transformation of a low-level viewpoint into a higher level

viewpoint.

Context of use adaptation is a composition of a translation with another type

of transformation enabling a viewpoint to be adapted in order to reflect a change

in the context of use of a UI.

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 119

Figure 6.5 Transformation paths, step and substep

As show in Figure 6.5, development paths are composed of development steps. De-

velopment steps are instances of transformation types described in Section 6.3.3. De-

velopment steps are decomposed into development substeps. A development substep

realizes a basic goal assumed by the developer while constructing a system. Some

basic goals have been identified by Luo (1995). It may consist, for instance, of se-

lecting concrete interaction objects, defining navigation, etc. Development steps and

development substeps may be realized by transform system. In the remainder of this

section, subsections 6.4.1, 6.4.2, and 6.4.3 respectively illustrate main development

paths (forward, reverse engineering, and context of use adaptation). An example for

each development step and substep is provided. All examples use the graphical for-

malism of the tool AGG (Ehrig et al., 1999).

6.4.1 Forward Engineering

As shown in Figure 6.6, the starting point of UI forward engineering is the construction

of a task specification and a domain model. This initial representation is then trans-

formed into an abstract UI which is then transformed into a concrete UI model. The

concrete UI model is then used to generate UI code. A forward engineering process is

fully illustrated hereafter.

From Task & Domain to Abstract User Interface. Step T1 (Figure 6.6)

concerns the derivation of an AUI from models at the computation-independent view-

point (e.g., a task, a domain, or task and domain model). This development step may

involve the following development substeps:

www.manaraa.com

120 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 6.6 Forward transformational development of UIs

Identification of Abstract UI structure consists of the definition of groups of

abstract interaction. Each group corresponds to a group of tasks tightly coupled

together. The meaning of “task coupling” may vary from one method to an-

other. It goes from very simple heuristics like “for each group of task child of

a same task generate an interaction space” to sophisticated heuristics exploiting

temporal ordering and decomposition structure between tasks (e.g., enable task

sets method followed by Mori et al. ,2004) or information flow between tasks

e.g., TRIDENT method proposed by Vanderdonckt and Bodart (1993).

Example 1 is a transformation system composed of two rules enabling the creation of a
simple hierarchical structure containing abstract individual components and abstract
containers.

Rule 1 (Figure 6.7): For each leaf task of a task tree, create an Abstract Indi-

vidual Element. For each task, parent of a leaf task, create an Abstract. Link

the abstract container and the Abstract Individual Element by a containment

relationship.

– Rule 2 (Figure 6.8): create an Abstract Container structure similar to the

task decomposition structure.

Selection of abstract individual component consists of finding the best ab-

stract individual component type to support one or several user’s tasks. Task

type, attribute types and domain of value of domain concepts, structure of the

domain model are notably important information to perform an adequate AIC

selection.

Example 2 is composed of rule 3. It exploits information on task action types to attach
appropriate facets to corresponding abstract individual components.

Rule 3 (Figure 6.9): for each abstract individual element mapped onto a task

the nature of which consists in the activation of an operation and this task is

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 121

Figure 6.7 Creation of abstract individual components derived from task model leaves

Figure 6.8 Creation of abstract containers derived from task model structure

mapped onto a class, assign to the abstract individual component an action facet

that activates the mapped method.

Figure 6.9 Creation of a facet for an abstract individual component derived from task

action type

Identification of spatiotemporal arrangement of abstract individual com-
ponents and abstract containers. The structure of a task model is exploited

to derive spatiotemporal arrangement of elements contained in an AUI. This,

temporal relationships defined between tasks can be respected in the abstract

specification. This is an essential guarantee of usability of the UI to be created.

Spatiotemporal relationships between abstract elements are done using Allen

www.manaraa.com

122 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

temporal relationships generalized for 2D and specialized for describing any ar-

rangement of a pair of widgets (Trevisan et al. 2002). Limbourg et al. (2005) de-

tail this mechanism more thoroughly. Two levels of arrangement are identified:

(1) intra-container level (example 3) concerns the arrangement of abstract indi-

vidual components within the same abstract container (2) inter-container level

(example 4) concerns the definition of a navigational structure among abstract

containers.

Example 3 is composed of rule 4. It places abstract individual components in prece-
dence relationship (“isBefore”) based on the fact that the tasks they represent are
sequential (“�”). To perform a complete arrangement every type of task temporal
relationship should be covered by a rule.

Rule 4 (Figure 6.10): for every couple of AIC belonging to a same abstract

container and these AIC are mapped onto sister tasks that are sequential “�”,

create a relationship of type “isBefore” between these AIOs.

Figure 6.10 A sequentialization of abstract individual component derived from task tem-

poral relationships

Example 4 is composed of rule 5. It defines spatiotemporal arrangement between
abstract containers. It uses the same principle as example 3

Rule 5 (Figure 6.11): For an abstract container (ac1) mapped onto a task

(taskX). TaskX is related to a task (taskY) that is mapped onto an AIO (aio2)

belonging to an abstract container (ac2) different than ac1, then create an “is

simultaneous” spatiotemporal relationship between them.

Figure 6.11 A placement of abstract container derived from task temporal relationships

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 123

From Abstract User Interface to Concrete User Interface . Step T2

consists of generating a concrete UI from an abstract UI. This development step may

involve the following development substeps:

Reification of abstract containers into concrete containers. An abstract con-

tainer may be reified in different types of concrete containers. Factors influenc-

ing this transformation are: modality, context of use, interaction style, designer’s

preference. A major difficulty of this step resides in the problem of choosing

an appropriate level to group abstract containers into a concrete container (typi-

cally a window for a graphical modality). A minimal choice would be to create

a concrete container (e.g., a window) for each group of sibling leaf tasks. A

maximal solution would be to group all abstract individual components and all

abstract containers into a single concrete container (e.g., one window).

Example 5 is a transformation system composed of rules 6 and 7. This system trans-
forms into window, abstract containers at a certain depth in the abstract container
hierarchy. All abstract containers content is reified and embedded into the newly cre-
ated window.

Rule 6 (Figure 6.12): Each abstract container at level “leaf-l” is transformed

into a window. Note that an abstract container is always reified into a, so called,

box at the concrete level. This box is then embedded into a window.

Figure 6.12 A creation of windows derived from containment relationships at the abstract

level

Rule 7 (Figure 6.13): Each abstract container contained into an abstract con-

tainer that was reified into a window is transformed into a horizontal box and

embedded into the window.

Selection of concrete individual components. Functionalities of abstract in-

dividual component are identified with their facet. Selection of concrete indi-

vidual components consists of choosing the appropriate concrete element that

will support whole or a part of the facets associated with an abstract individual

component.

www.manaraa.com

124 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 6.13 A generation of window structure derived from containment relationship at

the abstract level

Example 6 is composed of rule 8. It creates an editable text component (i.e., a text
box) to reify an AIO with an input facet.

Figure 6.14 Creation of an editable text component (i.e., an input field) derived from

facets type of abstract components

Rule 8 (Figure 6.14): Each input facet of an abstract individual component is

reified by a graphical individual component (a type of concrete individual com-

ponent) of type “editable text component” (i.e., a text box).

– Arrangement of concrete individual component. Allen relationships

used to specify spatiotemporal relationships among abstract interaction

objects are interpreted in order to provide information on the relative

placement of a concrete individual component with respect to other

elements of this type.

Example 7 is composed of rule 9. This example transforms an AUI into a concrete
model for the graphical modality. It chains concrete individual components according
to abstract individual component ordering.

Rule 9 (Figure 6.15): For each couple of abstract individual components related

by a “isBefore” relationship and reified into concrete individual components,

generate a “isAdjacent” relationship between the concrete individual compo-

nents.

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 125

Figure 6.15 A placement of graphical individual components derived from spatiotemporal

relationships at the abstract level

– Definition of navigation. Container transition relationships are trans-

formed into navigation relationships. Ad hoc navigation objects may be

created for this purpose (e.g., a menu, a tabbed dialog box bar may be

created).

Example 8 is composed of rule 10. It generates a button to enable navigating between
two windows.

Figure 6.16 A window navigation definition derived from spatiotemporal relationships at

the abstract level

Rule 10 (Figure 6.16): For each container related to another container belong-

ing to different windows and their respective abstract container related by a “is

before relationship”, generate a navigation button in source container pointing

to the window of target container.

From Concrete User Interface to Code. Step T3 consists of code gener-

ation from a CUI. Code generation techniques for UI have been surveyed in various

domains such as generative programming and model to code approach in Visitor-based

approach and template based approach (Czarnecki and Eisenecker, 2000).

www.manaraa.com

126 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

6.4.2 Reverse Engineering

As shown in Figure 6.17, the starting point of UI reverse engineering is the UI code.

This code is analyzed and transformed into a higher level representation i.e., a concrete

UI. From this CUI model, an AUI and, finally, a task and domain model are retrieved.

Figure 6.17 Reverse transformational development of UIs

From Code to Concrete User Interface . A state of the art in reverse engi-

neering of UIs can be found in Bouillon et al., (2004) expressed according to the IEEE

Terminology (Chikofsky and Cross, 1990). Transition T1 is notably supported by Re-

versiXML (Bouillon, Vanderdonckt, and Chieu, 2004), an on-line tool functioning as

a module of an Apache server which performs reverse engineering into UsiXML. It

takes as input a static HTML page, a configuration file containing a set of user-defined

options, and produces a concrete and/or abstract UI.

From Concrete User Interface to Abstract User Interface. Transition

T2 consists of deriving a more abstract UI specification from a concrete one. This

derivation is trivial because the source model holds more information than the target

model. Nevertheless, several development substeps may be identified: abstraction of

CIO into AIO, abstraction of arrangement relationships, abstraction of navigation, etc.

Example 9 is composed of rule 11. It consists of obtaining an abstract individual
component equipped with an input facet.

Rule 11 (Figure 6.18): For each editable graphical individual component create

an abstract individual component equipped with an input facet.

From Abstract User Interface To Task & Domain. Transition T3 is the

derivation of a task and concept specification. This transition has been considered

very extensively in the area of reverse engineering where several techniques exist that

contribute to recover a design model from existing information such as code. Indeed,

the conceptual gap between AUI level and task and domain level is so important that

little information may be extracted from an AUI model to retrieve a task or domain

specification. Static analysis of Web pages examines the code of a Web page without

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 127

Figure 6.18 Creation of a facet at the abstract level derived from a type analysis of

graphical individual components

interpreting or executing it in order to understand aspects of the website. Since static

analysis has been successfully used in software testing and compiler optimization, it

has been extensively used for analyzing the HTML code of Web pages. However,

this technique leaves untreated all non-HTML parts of the Web page. Therefore other

techniques need to be investigated such as the following methods. Pattern matching
parses the code of a Web page to build a manipulable representation of it. Then slicing

techniques are used to extract interface fragments from this representation, and a pat-

tern matcher identifies syntactic patterns in the fragments. Using the code fragments

as a basis, details about modes of interaction and conditions of activation are identified

with control flow analysis. Syntactic Analysis and Grouping relies on a recognition al-

gorithm that identifies input/output statements and attempts to incorporate them into

groups. The grouping information is then used to define screens from the original

user interface. This is particularly appropriate for scripting languages. Cliché and
Plan recognition automatically identify occurrences of clichés, stereotyped code frag-

ments for algorithms and data structures. The cliché recognition system translates the

original code into a plan calculus, which is then encoded into a flow graph, produc-

ing a language-independent representation of the interpretation’s flow that neutralizes

syntactic variations in the code.

Example 10 is composed of rule 12. This example derives information on task action
type from the abstract UI level.

Rule 12 (Figure 6.19): For each abstract individual component equipped with

a navigation facet create a task of action type “start/go” on an item of type

“element”.

6.4.3 Context of Use Adaptation

Context adaptation (illustrated in Figure 6.20) covers model transformations adapting

a viewpoint to another context of use. This adaptation may be done at different levels.

www.manaraa.com

128 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 6.19 Definition of task action types derived from an analysis of facets at the

abstract level

Figure 6.20 Context adaptation at different levels of our framework

From Task & Domain to Task & Domain. We propose one development

substep type to exemplify adaptation at T1 level (Figure 6.20): Transformation of a

task model.

Transformation of a task model: Transformation of a task model may be use-

ful to adapt a task specification to different categories of users, to different envi-

ronments. For instance, an expert user needs less structuring in the accomplish-

ment of a task than a novice user. This has an influence on the relationships be-

tween tasks. Another example is the management of user’s permissions. Some

users may not be allowed to perform certain tasks (e.g.,., editing a document),

transformation rules may be defined to adapt a task specification to these con-

straints.

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 129

Example 11 is a transformation system composed of rule 13 and rule 14. A task
hierarchy is “flattened” to allow an (expert) user to perform all tasks at the same time
(i.e., concurrently).

Figure 6.21 Flattening of a task tree structure

Rule 13 (Figure 6.21): This rule (1) erases each intermediary task (i.e., non-leaf

and non-root tasks) and (2) attaches every leaf task to the root.

Rule 14 (Figure 6.22): For each sister tasks change their temporal relationship

into concurrent.

Figure 6.22 Transforming all temporal relationship to concurrent

From Abstract User Interface to Abstract User Interface Adaptation
at this level. Adaptation at the abstract level concerns abstract container reshuf-

fling and abstract individual component modification (e.g., facet modification, facet

splitting, facet merging). We propose an example of abstract individual component

modification.

Abstract individual component facet modification: A modification of an ab-

stract individual component affects its facets in their specification (e.g., an input

facet is mapped onto a different domain concept) or their structuring (e.g., a

facet is transferred onto another abstract component, a facet is erased).

Example 12 is a transformation system containing rules 15 and 16. It merges the facets
of two abstract individual components mapped onto concurrent tasks. This example is

www.manaraa.com

130 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

based on the assumption that the tasks of a system must be concentrated into a lesser
number of abstract components. This means that concrete components resulting from
the abstract specification will have to assume more ‘functionalities’ than in the source
version of the specification.

Figure 6.23 A merging of facets of abstract individual components

Rule 15 (Figure 6.23): For each pair of abstract individual components mapped

onto concurrent tasks. Transfer all facets of the abstract individual component

that is mapped onto the task that is target of the concurrency relationship, to the

other abstract individual component.

Rule 16 (Figure 6.24): Erase all abstract individual components that have no

facets left.

Figure 6.24 Erasing abstract individual components with no facets left

From Concrete User Interface to Concrete User Interface. Adapta-

tion at the concrete level consist of several development substeps like container type

modification (called concrete container reformation), modification of the types of con-

crete individual components (called concrete individual components reselection), lay-

out modification (layout reshuffling), or navigation redefinition. We provide hereafter

examples for these first three adaptation types.

Concrete container reformation: Concrete container reformation may cover

situations like container type transformation (e.g., a window is transformed into

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 131

a tabbed dialog box) or container system modification (e.g., a system of win-

dows are merged into a single window).

Example 13 is a transformation system composed of rules 17, 18 and 19. This trans-
formation adapts a window into a tabbed dialog box and transfers window content
into several “tabbed items”.

Figure 6.25 Initializing of the adaptation process by creating graphical component to

adapt into

Rule 17 (Figure 6.25): Each window is selected and mapped onto a newly cre-

ated tabbed dialog box.

Rule 18 (Figure 6.26): Transfers every first level box of the window to adapt

into tabbed item composing a tabbed dialog box.

Rule 19 (Figure 6.27): Cleans up the specification of remaining empty main

boxes.

Figure 6.26 Creation of tabbed item and transfer of the content of the adapted window

Concrete individual component reselection: Reselection transformations

adapt individual component into other individual components. This covers

individual component merging or slitting, or replacement.

www.manaraa.com

132 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 6.27 Deletion of unnecessary containers

Example 14 is composed of rule 20. It merges a non-editable text component (i.e.,
a label) and its adjacent editable text component into one editable text component.
The content of the non-editable text component is transferred into the editable text
component

Figure 6.28 Merging of a non-editable text component (e.g., a label) and an editable text

component (e.g., an input field) into one single editable text component

Rule 20 (Figure 6.28): For each couple of adjacent editable text component and

non-editable text component. Erase the editable text component and transfer its

content into the non-editable text component (unless some contents have already

been transferred).

Rule 21(Figure 6.29): Each box is transformed into a vertical box and every

individual component is glued to left.

– Layout reshuffling: A layout at the concrete level is specified with hor-

izontal and vertical boxes. An element contained in a box may be glued

to an edge of this box. Any transformation modifying this structuring is

categorized as layout reshuffling transformation.

Example 15 is composed of rule 21. It squeezes all boxes of a UI.

1. Alternate and Composed development paths

Other development paths could be equally expressed depending on their entry and exit

points. Some of them are partially supported by various tools based on the UsiXML

language (Vanderdonckt, 2005).

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 133

Figure 6.29 Squeezing of a layout structure to display vertically

Retargeting: This transition is useful in processes where an existing system

should be retargeted, that is, migrated from one source computing platform to

another target computing platform that poses different constraints. Retarget-

ing is a composition of reverse engineering, context adaptation, and forward

engineering. In other words a UI code is abstracted away into a CUI (or an

AUI). This CUI (or AUI) is reshuffled according to specific adaptation heuris-

tics. From this reshuffled CUI (or AUI) a new interface code is created along a

forward engineering process.

Middle-out development: This term coined by Luo (1995) refers to a situation

where a developer starts a development by a specification of the UI (no task or

concept specification is priorly built). Several contributions have shown that, in

reality, a development cycle is rarely sequential and even rarely begins by a task

and domain specification. Literature in rapid prototyping converges with similar

observations. Middle-out development shows a development path starting in the

middle of the development cycle e.g., by the creation of a CUI or AUI model.

After several iterations at this level (more likely until customer’s satisfaction

is reached) a specification is reverse engineered. From this specification the

forward engineering path is followed.

Widespread development (Hartson and Hix, 1989): In this development path,

the designer may start wherever she wants (e.g., at any level of the development

process), perform the rules that are relevant at this level, evaluate the results

provided by these rules and proceed to other development steps as appropriate.

This is a somewhat extreme position where everything is open and flexible,

perhaps somewhat too much.

Round-trip engineering (Demeyer et al. 1999): This development path is

unique in the sense that it is a genuine path, but not directly for development. It

results from applying manual modifications to code which has been generated

automatically, after a model-to-code transformation. If a manual change has

been operated on some piece of code generated automatically, then this change

will be lost the next time a model-to-code transformation is applied. In order

not to lose this effort, it is desirable to propagate the manual change into an

abstraction which is relevant to the CUI.

www.manaraa.com

134 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

6.5 CONCLUSION

In this chapter, a method has been introduced and defined that supports multiple paths

in the domain of development of UIs. These paths are basically expressed on three

types of transformation (i.e., abstraction, reification, and translation) so that any de-

velopment path, consisting of development steps, can be supported by a transforma-

tional approach by combining transformations of the three types. To uniformly and

consistently apply the transformations in a rigorous framework, graph grammars and

graph transformations have been exploited. Correctness of transformations is an issue

that may emerge when talking about model transformation. Two types of correctness

may be considered.

Syntactic (structural) correctness stipulates that for any well-formed source model,

and transformation rule enabled to provide a well-formed target model. While seman-

tic correctness is hard to prove, syntactic correctness is easily guaranteed within our

framework by two essential elements: Model type checking and consistency checks

mechanism. Graph type checking ensures that a given transformation will not be ap-

plied if the resulting model it produces violates the meta-model it is supposed to con-

form to. Deriving a model to another may endanger consistency between different

representations. For this purpose some basic consistency rules can be expressed with

the technique of graph consistence rules. A graph of types may also be accompanied

with the expression of specific consistency constraints inexpressible within the graph

of types. OCL is used for this purpose in Agrawal et al. (2003), pre and post-condition

with graph patterns (Akehurst et al., 2003).

Semantic correctness stipulates a semantic adequacy between a source and a target

model. In our context, semantic correctness proving is hard to consider as by definition

the domain of discourse of source model and target model are different.

Other important properties of interest that denote the powerfulness and the limita-

tions of our method can be discussed equally.

Incompleteness of the method. There are few criteria to judge the quality of the

method. It is also impossible to prove that a general solution is optimal. We can only

prove sometimes formally, sometimes informally that a solution meets several quality

criterias.

Seamlessness. This is a quality attribute attached to certain methodologies in the field

of software engineering. It qualifies a small gap between concepts used at the analysis

level and concepts relevant to implementation. Graph grammars, as used in this work,

contribute to reach seamlessness of our method as manipulated structures from the

requirements analysis to the design are graphs. Furthermore, the knowledge used to

perform development steps are graphs.

Traceability. The identification and documentation of derivation paths (upward) and

allocation or flow down paths (downward) of work products in the work product hi-

erarchy. Important kinds of traceability include: To or from external sources to or

from system requirements; to or from system requirements to or from lowest level

requirements; to or from requirements to or from design; to or from design to or from

implementation; to or from implementation to test; and to or from requirements to test

(IEEE, 1998).

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 135

Consistency The degree of uniformity, standardization, and freedom from contradic-

tion among the documents or parts of a system or component (IEEE, 1998).

Iterative development cycle. Iteration is well supported as graph productions sup-

porting transitions in the development cycle may be undone to retrieve the source

artifact as it was before transformation. This artifact may be modified by a developer

and reused as source of a new derivation.

Last, and although empirical studies have already proven the advantages of using

an MDA-driven approach for the development of software applications (Bettin, 2002),

specific metrics should be precisely defined and applied to determine the effort and

quality of the models and code obtained by using on the one hand any UI methodology

on its own and on the other hand such methodologies like the one introduced in this

chapter. A comparative analysis of several projects conducted through a traditional

development method and through an MDA-driven method like the one presented here

represents a huge amount of work, but would certainly be very interesting to establish.

Acknowledgments

The authors acknowledge the support of the CAMELEON European project and the

SIMILAR network of excellence (www.similar.cc) on multimodal interfaces

funded by European Commission.

References

Agrawal, A., Karsai, G., and Lédeczi, A. (2003). An end-to-end domain-driven soft-

ware development framework. In Crocker, R. and Steele, G. L. Jr., editors, Com-
panion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2003, October 26-30,
2003, Anaheim, CA, USA, pages 8–15. ACM.

Akehurst, D. H., Kent, S., and Patrascoiu, O. (2003). A relational approach to defin-

ing and implementing transformations between metamodels. Software and System
Modeling, 2(4):215–239. On-line: http://www.cs.kent.ac.uk/pubs/2003/1764.

Bettin, J. (2002). Measuring the potential of domain-specific modeling techniques. In

Proceedings of the 2nd Domain-Specific Modeling Languages Workshop, Working
Papers W-334, Helsinki School of Economics, pages 39–44.

Boocock, P. (2003). The Jamda project. http://jamda.sourceforge.net/.

Bodart, F., Hennebert, A. M., Leheureux, J. M. and Vanderdonckt, J. (1995). A model-

based approach to presentation: A continuum from task analysis to prototype. In

F. Bodart, Focus on Computer Graphics Series, p. 77–94. New York: Springer-

Verlag.

Bouillon, L., Vanderdonckt, J., and Chieu, K. (2004). Flexible reengineering of web-

sites. In Proceedings of the 8th International Conference on Intelligent User Inter-
faces, Multiplatform interfaces, pages 132–139.

Brown, J. (1997). Exploring human-computer interaction and software engineering

methodologies for the creation of interactive software. ACM SIGCHI Bulletin,

29(1):32–35.

www.manaraa.com

136 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt,

J. (2003). A unifying reference framework for multitarget user interfaces. Interact-
ing with Computers, 15(3):289–308.

Chikofsky, E. J. and Cross, J. H. (1990). Reverse engineering and design recovery: a

taxonomy. IEEE Software, 7(1):13–17.

Czarnecki, K. and Eisenecker, U. W. (2000). Generative Programming Methods,
Tools, and Applications. Addison-Wesley, Readign: MA.

Demeyer, S., Ducasse, S., and Tichelaar, S. (1999), Why Unified is not Universal.

UML Shortcomings for Coping with Round-trip Engineering, In Proceedings UML
’99 (The Second International Conference on The Unified Modeling Language),
Kaiserslautern, Germany, pages 630–644.

Depke, R., Heckel, R., and Küster, J. M. (2002). Formal agent-oriented modeling with

UML and graph transformation. Science of Computer Programming, 44(2):229–

252.

D’Souza, D. F. and Wills, A. C. (1999). Objects, Components and Frameworks with
UML: The Catalysis Approach. Addison-Wesley, Readign: MA.

Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G. (1999). Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools. Singapore: World Scientific.

Eisenstein, J., Vanderdonckt, J., and Puerta, A. (2001). Applying model-based tech-

niques to the development of UIs for mobile computers. In Proceedings of the 2001
International Conference on Intelligent User Interfaces, pages 69–76, New York.

ACM Press.

Freund, R., Haberstroh, B., and Stary, C. (1992). Applying graph grammars for task-

oriented user interface development. In Koczkodaj, W. W., Lauer, P. E., and Toptsis,

A. A., editors, Computing and Information - ICCI’92, Fourth International Confer-
ence on Computing and Information, Toronto, Ontario, Canada, May 28-30, 1992,
Proceedings, pages 389–392, IEEE Computer Society.

Gerber, A., Lawley, M., Raymond, K., Steel, J., and Wood, A. (2002). Transformation:

The missing link of MDA. In Corradini, A., Ehrig, H., Kreowski, H.-J., and Rozen-

berg, G., editors, Graph Transformation, First International Conference, ICGT
2002, Barcelona, Spain, October 7-12, 2002, Proceedings, volume 2505 of Lec-
ture Notes in Computer Science, pages 90–105. Springer.

Griffiths, T., Barclay, P. J., Paton, N. W., McKirdy, J., Kennedy, J. B., Gray, P. D.,

Cooper, R., Goble, C. A., and Silva, P. P. (2001). Teallach: a model-based user in-

terface development environment for object databases. Interacting with Computers,

14(1):31–68.

Hartson, H. R. and Hix, D. (1989). Toward empirically derived methodologies and

tools for human-computer interface development. International Journal of Man-
Machine Studies, 31(4):477–494.

Heckel, R., Mens, T., and Wermelinger, M. (2002). Workshop on software evolution

through transformations: Towards uniform support throughout the software life-

cycle. In Corradini, A., Ehrig, H., Kreowski, H., and Rozenberg, G., editors, Graph
Transformation, First International Conference, ICGT 2002, Barcelona, Spain, Oc-

www.manaraa.com

MULTIPATH TRANSFORMATIONAL DEVELOPMENT 137

tober 7-12, 2002, Proceedings, volume 2505 of Lecture Notes in Computer Science,

pages 450–454. Springer.

Ho, W. M., Jézéquel, J. M., Le Guennec, A., and Pennaneac’h, F. (1999). UMLAUT:

An extendible UML transformation framework. In 14th IEEE International Confer-
ence on Automated Software Engineering, pages 275–278. IEEE Computer Society

Press.

IEEE, IEEE 830: Recommended Practice for Software Requirements Specifications.

IEEE Computer Society Press.

Kuske, S., Gogolla, M., Kollmann, R., and Kreowski, H.-J. (2002). An integrated

semantics for UML class, object, and state diagrams based on graph transforma-

tion. In Butler, M. and Sere, K., editors, 3rd Int. Conf. Integrated Formal Methods
(IFM’02), pages 11–28, Springer-Verlag.

Larman, C. (2001). Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Englewood Cliffs: Prentice Hall.

Limbourg, Q. and Vanderdonckt, J. (2003). Comparing task models for user interface

design. In Diaper, D. and Stanton, N., editors, The Handbook of Task Analysis for
Human-Computer Interaction, pages 135–154. Lawrence Erlbaum Associates.

Limbourg, Q. and Vanderdonckt, J. (2004a). Transformational development of user in-

terfaces with graph transformations. In Jacob, R. J. K., Limbourg, Q., and Vander-

donckt, J., editors, Proceedings of the 5th International Conference on Computer-
Aided Design of User Interfaces CADUI, pages 105–118. Kluwer.

Limbourg, Q. and Vanderdonckt, J. (2004b). UsiXML: A user interface description

language supporting mul-tiple levels of independence. In Matera, M. and Comai,

S., editors, Engineering Advanced Web Applications, pages 325–338. Rinton Press.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez, V. (2005).

UsiXML: a language sup-porting multipath development of user interfaces. In

Proc. of 9th IFIP Working Conference on Engineering for Human-Computer
Interaction jointly with 11th Int. Workshop on Design, Specification, and
Verification of Interactive Systems EHCI-DSVIS’2004, volume 3425 of Lecture
Notes in Computer Science, pages 200–220, Springer-Verlag.

Luo, P. (1995). A human-computer collaboration paradigm for bridging design con-

ceptualization and implementation. In Paternó, F., editor, Design, Specification and
Verification of Interactive Systems ’94, Focus on Computer Graphics, pages 129–

147, Springer-Verlag. Proceedings of the Eurographics Workshop in Bocca di Ma-

gra, Italy, June 8 – 10, 1994.

Mens, T., Van Eetvelde, N., Janssens, D., and Demeyer, S. (2001). Formalising refac-

toring with graph transformations. Fundamenta Informaticae, 21:1001–1022.

Miller, J. and Mukerij, J. (2003). MDA guide version 1.0.1. On-line: www.omg.org.

Mori, G., Paternò, F., and Santoro, C. (2004). Design and development of multidevice

user interfaces through multiple logical descriptions. IEEE Trans. Software Eng,

30(8):507–520.

Nanard, J. and Nanard, M. (1995). Hypertext design environments and the hypertext

design process. Communications of the ACM, 38(8):49–56.

Object Management Group (2003). Common warehouse specification version 1.1, vol.

1. http://www.omg.org/docs/formal/03-03-02.pdf.

www.manaraa.com

138 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Puerta, A. R. (1996). The MECANO project: Comprehensive and integrated support

for model-based interface development. In Vanderdonckt, J., editor, Computer-
Aided Design of User Interfaces I, Proceedings of the Second International Work-
shop on Computer-Aided Design of User Interfaces CADUI’96, June 5-7, 1996,
Namur, Belgium, pages 19–36. Presses Universitaires de Namur.

Puerta, A. R. (1997). A model-based interface development environment. IEEE Soft-
ware, 14(4):40–47.

Queensland University (2002). An OMG Meta Object Facility Implementation.

The Corba Service Product Manager, University of Queensland, 2002, On-line:

http://www.dstc.edu.au/Products/CORBA/MOF/.

Rensik, A. (2003). Proceedings of the 1st Workshop on Model-Driven Architecture:

Foundation and Application MDAFA’03. CTIT Technical Report TR-CTIT-03-27,

University of Twente, Twente. On-line: http://trese.cs.utwente.nl/mdafa2003/.

Rozenberg, G. (1997). Handbook on Graph Grammars and Computing by Graph
Transformation 1 (Foundations). World Scientific, Singapore.

Sucrow, B. (1998). On integrating software-ergonomic aspects in the specification pro-

cess of graphical user interfaces. Transactions of the SDPS Journal of Integrated
Design & Process Science, 2(2):32–42.

Sumner, T., Bonnardel, B., and Harstad, B. (1997). The cognitive ergonomics of

knowledge-based design support systems. In presented at Proceedings of the
Conference on Human Factors in Computing Systems (CHI’97), Atlanta, GA.

Thevenin, D. (2001). Adaptation en interaction homme-machine : le cas de la plas-
ticité. Ph.D. thesis, Universite Joseph-Fourier - Grenoble I, France.

Trevisan, D. G., Vanderdonckt, J., and Macq, M. (2002). Analyzing interaction in

augmented reality systems. In Pingali, G. and Jain, R., editors, roceedings of ACM
Multimedia 2002 International Workshop on Immersive Telepresence ITP’2002,

pages 56–59, ACM Press.

Vanderdonckt, J. (2005). A MDA-compliant environment for developing user inter-

faces of information systems. In Pastor, O. and Cunha, J. F., editors, Proceedings
of the 17th International Conference on Advanced Information Systems Engineer-
ing CAiSE 2005, Porto, Portugal, June 13-17, volume 3520 of Lecture Notes in
Computer Science, pages 16–31. Springer-Verlag.

Vanderdonckt, J. and Bodart, F. (1993). Encapsulating knowledge for intelligent auto-

matic interaction objects selection. In Proceedings of ACM INTERCHI’93 Confer-
ence on Human Factors in Computing Systems, Amsterdam, pages 424–429. ACM

Press.

Varró, D., Varró, G., and Pataricza, A. (2002). Designing the automatic transformation

of visual languages. Science of Computer Programming, 44(2):205–227.

Wegner, P. (1997). Why interaction is more powerful than algorithms. Communica-
tions of the ACM, 40(5):80–91.

www.manaraa.com

7 HUMAN-CENTERED ENGINEERING

OF INTERACTIVE SYSTEMS WITH THE

USER INTERFACE MARKUP LANGUAGE
James Helms1, Robbie Schaefer2, Kris Luyten3, Jo Vermeulen3,

Marc Abrams1,4, Adrien Coyette5, and Jean Vanderdonckt5

1Harmonia Inc. P.O. Box 11282 – Blacksburg, VA 24062-1282, U.S.A.
2Paderborn

University, Fakultät für Elektrotechnik, Informatik und Mathematik, Institut für Informatik,

Fürstenallee, 11 – D-33102 Paderborn Germany
3Hasselt University - tUL - IBBT

Expertise Center for Digital Media

Wetenschapspark 2, 3590 Diepenbeek, Belgium
4Department of Computer Science, Virginia Tech,

508 McBryde Hall – Blacksburg, VA 24061-0106, U.S.A.
5Belgian Laboratory of Computer-Human Interaction (BCHI),

Louvain School of Management (LSM), Université catholique de Louvain

Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium.

Abstract. The User Interface Markup Language (UIML) is a User Interface Descrip-

tion Language aimed at producing multiple user interfaces from a single model for

multiple contexts of use, in particular multiple computing platforms, thus addressing

the need for multichannel user interfaces. This chapter summarizes efforts devoted

to the definition and usage of UIML 4.0, the latest version of this UIDL which also

139

www.manaraa.com

140 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

covers dialog modeling. It describes the main parts of the UIML language, i.e., struc-

ture, presentation style, contents, behavior, connectivity, and toolkit mappings, and

the integrated development environment that supports the development lifecycle of

multichannel user interfaces based on UIML.

7.1 INTRODUCTION

User Interface Description Languages (UIDLs) can bridge the gap between formal

Human-Computer Interaction (HCI) models (e.g., with graphical representations) and

concrete implementations of User Interfaces (UIs) (Abrams et al. 1999). As such, they

are an integral part of human-centered engineering of interactive systems and can be

applied at any stage of a human-centered design process (Hartson and Hix, 1989). In

this chapter, we will give an overview on the User Interface Markup Language (UIML)

and show, how the fundamental language concepts, tools and extensions as well as

the new features of UIML 4.0 can be used to improve a human-centered software

development process.

7.1.1 What Are UIDLs?

In general, any UIDL should fulfill a series of requirements such as: the ability to

specify any target UI, the ability to process a UI specified in the terms of this UIDL,

legibility of the resulting specifications, etc. Specifying a UI in a particular UIDL

should not be viewed as just an exercise in specification. A UI should be specified as

rigorously as possible for multiple purposes: capturing user requirements and turning

them into a concrete UI, determining the attributes of a particular UI, describing a

UI unambiguously so that this description could be passed to the developers, whether

they use a software tool or not. A UIDL could be interpreted as a concrete syntax

for UI specification similar to specification languages for the other areas of computer

science (e.g., for data base management systems). As such, it could take any form.

Expressing this concrete syntax in an XML format is nowadays particularly popular

since XML-based technology has received enough attention to be widely used and

effectively supported by appropriate software.

7.1.2 UIML and Software Engineering

In this chapter we focus on UIML, an open, standardized XML language to express

user interface (UI) designs that are multidevice, multilingual, multimodal, indepen-

dent of UI metaphor, and designed to interoperate with concepts and languages from

OASIS, W3C, and other standards organizations. Using UIML, HCI best practices

can be adopted more easily by viewing HCI design and implementation as a process

of transformation from initial design model to an open standard XML UI implementa-

tion language and finally to target languages for deployment. UIML defines mappings

between the abstractions used in the UI description and the underlying implementa-

tion, and UIML implementations make liberal use of transforms to convert from one

set of abstractions to another. Note that the target languages can be XML languages

(e.g., XHTML, SVG) or programming languages (e.g., C# and Java).

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 141

There are many XML-based UIDLs. In addition to languages from W3C (HTML,

XHTML, XForms, and SVG), early efforts include UIML, the Alternate Abstract

Interface Markup Language (Zimmermann et al., 2002), the eXtensible Interface

Markup Language (XIML) (Puerta and Eisenstein, 2002) and the XML User Inter-

face Language (XUL) (www.mozilla.org/projects/xul/). More recently

we have seen the onset of DISL (7.3.4) and UsiXML.

One challenge in creating UIDLs is designing the language to support the software

engineering aspects of HCI engineering over the entire range of user interfaces that

people build, from simple personal applications to complex enterprise applications

(e.g., a ship with tens of thousands of UIs); from throw-away software with a single

version (e.g., a class project) to software that is used for decades in many different

versions (e.g., a banking or hospital system); from UIs deployed to one device to UIs

deployed to thousands of vastly different devices (e.g., 2D or 3D, virtual or augmented

reality, voice or haptic), and for any UI metaphor.

We will explore how UIML supports software engineering by providing the follow-

ing benefits:

Reusability of HCI design components and modules (see section 7.2)

Abstraction and domain-specific vocabularies to allow generalized use of the

language (see section 7.2.3)

Adaptability to implementation languages and display devices (see Sec-

tion 7.3.1)

Separation of HCI engineering concerns (see Section 7.2.1)

Rapid prototyping for user-centered design (see Section 7.3.1)

Tool support (see section 7.3)

A unified language for representing UIs

In this chapter, we will show how the fundamental UIML concepts, tools, and

extensions, as well as the new features of UIML 4.0 can be used to improve a human-

centered HCI development process.

7.2 UIML: AN OVERVIEW

The User Interface Markup Language (UIML) is a declarative, XML-compliant meta-

language for describing UIs. The design objective of the UIML is to provide a vendor-

neutral, platform-independent, canonical representation of any UI suitable for map-

ping (rendering) to existing implementation languages, and as such an ideal candidate

for human-centered engineering of interactive systems. Work on UIML was motivated

by the following goals:

Allow individuals to implement UIs for any device without learning languages

and application programming interfaces (APIs) specific to the device.

www.manaraa.com

142 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Reduce the time to develop UIs for a family of devices.

Provide a natural separation between UI code and application logic code.

Allow non-programmers to implement UIs.

Permit rapid prototyping of UIs.

Simplify internationalization and localization.

Allow efficient download of UIs over networks to client machines.

Allow extension to support UI technologies that are invented in the future.

UIML provides a puzzle piece to be used in conjunction with other technologies,

including HCI design methodologies, modeling languages such as XIML (Eisen-

stein, Puerta and Vanderdonckt 2001) and UsiXML (Limbourg and Vanderdonckt,

2004b), authoring tools, transformation algorithms, and existing languages and stan-

dards (W3C and OASIS specifications). UIML is not a silver bullet that replaces

human decisions needed to create UIs.

UIML is biased toward an object-oriented view and toward complementing other

specifications (e.g., SOAP, XForms Models, XHTML, HTML, WML, VoiceXML).

During the design of UIML an effort was made to allow interface descriptions in

UIML to be mapped with equal efficiency to various vendors’ technologies (e.g.,

UIML should efficiently map to both ASP .Net and JSP to further the goal of vendor-

independence in Web Services).

Why is a canonical representation useful? Today, HCIs are built using a variety

of languages: XML variants (e.g., HTML, XHTML, VoiceXML,), JavaScript, Java,

C++, etc. Each language differs in its syntax and its abstractions. For example, the

syntax in HTML 4.0 to represent a button is <button>, and in Java Swing “JButton b =

new JButton;”. The work on UIML asks the fundamental question, “Do we inherently

need different syntaxes, or can one common syntax be used?” The benefit of using

a single syntax is analogous to the benefit of XML: Software tools can be created

for a single syntax (UIML), yet process UIs destined for any existing language. For

example, a tool to author UIs can store the design in UIML, and then map UIML to

target languages in use today (e.g., HTML, Java) or invented in the future. Progress

in the field of UI design can move faster, because everyone can build tools that either

map interface designs into UIML or map UIML out to existing languages. Tools can

then be snapped together using UIML as a standard interchange language.

There is a second benefit of a canonical UI description. By using a single syn-

tax to represent any UI, an interface is in a very malleable form. For example, one

technique gaining popularity in the human computer interface community is transfor-

mation. With a canonical representation for any UI, someone that designs a transform

algorithm can simply implement the algorithm to transform an input UIML document

to a new output UIML document. Compare this approach to implementing the same

transform algorithm only to transform HTML documents, then reimplementing the

transform algorithm to only transform C++ interfaces, and so on.

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 143

In any language design, there is a fundamental trade-off between creating some-

thing general versus special-purpose. UIML is for general-purpose use by people who

implement UIs and people who build tools for authoring UIs. It is envisioned that

UIML will be used with other languages with a more focused purpose, such as UI

design languages. Ultimately most people may never write UIML directly—they may

instead use a particular design language suited to a certain design methodology, and

then use tools to transform the design into a UIML representation that is then mapped

to various XML or programming languages.

UIML is object-based, in that it describes both objects, classes, and the interac-

tions among objects. UIML was designed to allow UI descriptions to be mapped with

equal efficiency to different vendors’ technologies. Reuse is a first class concept in

UIML and is accomplished through a template mechanism. UIML templates can con-

tain snippets of UIML that can then be inserted into other UIML documents. This

capability allows designers to build up libraries of user interface components and style

sheets that can be applied throughout their systems. UI style guidance can be directly

enforced via this mechanism. Libraries defined in this way allow custom components

to be defined once and reused, which can be very helpful for user-centered software

engineering e.g., by adhering to usability patterns. Four key concepts underlie UIML:

1. UIML is a metalanguage. To understand this, consider XML. XML does not

define tags, such as <p>. Instead, one must add to XML a specification of the

legal tags and their attributes, for example by creating a document type defi-

nition (DTD). Therefore the XML specification does not need to be modified

as new tag sets are created, and a set of tools can be created to process XML

independent of the tag sets that are used. UIML defines a small set of powerful

tags, such as <part> to describe a part of a UI, or <property> to describe a

property of a UI part. UIML tags are independent of any UI metaphor (e.g.,

graphical UIs), target platform (e.g., PC, phone), or target language to which

UIML will be mapped (e.g., Java, HTML). To use UIML, one must add a toolkit

vocabulary (roughly analogous to adding a DTD to an XML document). The

vocabulary specifies a set of classes of parts, and properties of the classes. Dif-

ferent groups of people can define different vocabularies, depending on their

needs. One group might define a vocabulary whose classes have a 1-to-1 corre-

spondence to HCI widgets in a particular target language (i.e., the classes might

match those in the Java Swing API). Another group might define a vocabulary

whose classes match abstractions used by a UI designer (e.g., Title, Abstract,

BodyText for UIs to documents). UIML is eventually standardized once and

tools can be developed for UIML, independently from the development of vo-

cabularies. For more on vocabularies see Section 7.2.3.

2. UIML “factors out” or separates the elements of a UI. The design of UIML

started with the question: what are the fundamental elements needed to describe

any man-machine interaction? The separation in UIML identifies what parts

comprise the UI, the presentation style for each part as a list of <property>
elements, the content of each part (e.g., text, sounds, images) and binding of

content to external resources (e.g., XML resources, or method calls in external

www.manaraa.com

144 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

objects), the behavior of parts when a user interacts with the interface as a set of

rules with conditions and actions, the connection of the UI to the outside world

(e.g., to business logic), and the definition of the vocabulary of part classes.

For a comparison of the separation in UIML to existing UI models, such as the

Model View Controller, refer to Phanouriou (2000).

3. UIML views the structure of an HCI, logically, as a tree of UI parts that changes
over the lifetime of the interface. There is an initial tree of parts, which is the UI

initially presented to a user when the interface starts its lifetime. During the life-

time of the interface, the tree of parts may dynamically change shape by adding

or deleting parts. For example, opening a new window containing buttons and

labels in a graphical interface may correspond to adding a subtree of parts to

the UIML tree. UIML provides elements to describe the initial tree structure

(<structure>) and to dynamically modify the structure (<restructure>).

4. UIML allows UI parts and part-trees to be packaged in templates. Templates

may then be reused in various interface designs. This provides a first-class no-

tion of reuse within UIML, which is missing from other XML HCI languages,

such as HTML.

Due to these concepts, UIML is particularly useful for creating multiplatform UIs

and also personalized solutions for different users. To create multiplatform UIs, one

leverages the metalanguage nature of UIML to create a vocabulary of part classes

(e.g., defining class Button), and then separately defines the vocabulary by specifying

a mapping of the classes to target languages (e.g., mapping UIML part class Button

to class javax. swing.JButton for Java and to tag <button> for HTML 4.0). One can

create a highly device-independent UI by creating a generic vocabulary that tries to

eliminate bias toward particular UI metaphors and devices. By “device” we mean PCs,

various information appliances (e.g., handheld computers, desktop phones, cellular or

PCS phones), or any other machine with which a human can interact. In addition,

because UIML describes the interface behavior as rules whose actions are applied to

parts, the rules can be mapped to code in the target languages (e.g., to lines of Java

code or JavaScript code).

UIML is currently being standardized in the Organization for the Advancement

of Structured Information Standards (OASIS, www.oasis-open.org) by a tech-

nical committee comprised of UI definition language experts from across the globe.

The technical committee’s Web page can be accessed at www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml.

7.2.1 Generalizing the Model View Controller Pattern for UIs

UIML is modeled by the placeMeta-Interface Model (Phanouriou 2000) pictured in

Figure 7.1.

UIML is designed to describe arbitrarily complex UIs on any device through a

unique division of the UI definition into the following six elemental components:

1. Structure: the hierarchy of parts in the UI.

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 145

Figure 7.1 The Meta-Interface Model

2. Presentation style: the sensory characteristics of the parts in the UI.

3. Content: the words, images, etc. appearing or being spoken in the UI.

4. Behavior: a set of condition-action rules that define what happens when a user

inters with an UI element, such as a button.

5. Connectivity (mappings to object methods in the application layer).

6. Toolkit mappings (mappings of the object class names in the hierarchy of parts

to specific objects in the toolkit used to render the UI.

Each of these elements can be described independently to allow reuse and flex-

ibility in creating UIs for widely different platforms. In addition, the separation of

concerns inherent to UIML was developed to generalize the Model View Controller

design pattern for use with UIs. In UIML, the Interface shown in Figure 7.1, serves as

the model of the UI, describing the structure, style, content, and behavior of the HCI

in a canonical way. The View is then generated from the presentation which maps

concepts used in the interface (model) to concrete widgets on the screen. Finally the

Logic acts as the controller bridge between the HCI and the model. This allows the UI

to communicate with the application without defining specifics of the communication

(protocols, syntax, etc.).

7.2.2 Hello World Example

The famous “Hello World” example in UIML is shown in Figure 7.2. It simply gener-

ates a non-interactive UI that contains the words “Hello World!”. The example illus-

trates the typical structure of a UIML UI description. Notice how the interface defini-

tion is divided into a separate structure and style child. The structure child contains all

the parts that define the user interface, in this case a container called “TopHello” and

a label called “hello”. The hierarchical nature of the structure definition implies that

www.manaraa.com

146 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC "-//OASIS//DTD UIML 3.1 Draft//EN’’

‘‘http://uiml.org/dtds/UIML4_0a.dtd’’>

<uiml>
<interface>

<structure>
<part id=‘‘TopHello’’>

<part id=‘‘hello’’ class=‘‘helloC’’/>
</part>

</structure>
<style>

<property part-name=‘‘TopHello’’ name=‘‘rendering’’>TopContainer</property>
<property part-name=‘‘TopHello’’ name=‘‘title’’>Hello</property>
<property part-class=‘‘helloC’’ name=‘‘rendering’’>String</property>
<property part-name=‘‘hello’’ name=‘‘content’’>Hello World!</property>

</style>
</interface>
<peers> ... </peers>

</uiml>

Figure 7.2 The UIML specifications for the “Hello World!” example

“hello” is a child of “TopHello” and is therefore contained within it. The style section

enumerates the presentation properties on the two parts that will affect the appearance

of the UI. For example, the “TopHello” container will have “Hello” as the title and

the label will contain “Hello World!” as specified by the title and content properties,

respectively. Properties are associated with parts through the part-name or part-class
attribute. If a property is meant to apply to only one part, then we use part-name to

specify by id the part that will exhibit this property. If part-class is used, then the

property will be applied to all parts of that class.

7.2.3 Generalizing Through Vocabularies

The richness of the user interfaces that can be described with a UIDL is proportional

with the expressive power of the presentation model. There are two extremes with re-

gard to the expressive power of a UIDL: the common denominator and the metawidget
set approach. On the one hand, the common denominator approach identifies a general

set of abstract interactors that can be used on most platforms or devices. This set is

used to create the UIDL: the language’s syntax is limited to describing user interfaces

composed out of elements from the general set. On the other hand, the metawidget set

approach avoids including any widget-set specific information in the language. In this

case, the UIDL is a metalanguage that describes different aspects of a user interface

that are independent of any widget set, platform or device. UIML is such a canonical

language that adheres the metawidget set approach.

The mapping vocabulary is the part of UIML that allows using a custom naming

scheme while creating the user interface description. This implies the names used

in UIML to describe the user interface can be domain-specific names and the nam-

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 147

Figure 7.3 Graphical overview of abstraction by using vocabularies

ing scheme defined in the external vocabulary will map these names onto platform-

specific names. For example, a UIML document for in-car navigation systems could

use names as “route”, “speed”, “crossroad” and the vocabulary will tell how to present

these domain specific names in a concrete widget set. Similar, a vocabulary for build-

ing music player user interfaces could define names as “playlist”, “arrangement” and

“track”. Support for custom naming schemes allow creating vocabularies that abstract

the problem domain and uses names known to the domain experts. Figure 7.3 provides

a graphical overview of the vocabulary abstraction idea.

The standard UIML vocabulary allows mapping one domain object onto one widget
class but does not allow mapping a domain object onto a set of widget classes or a

user interface pattern. We are currently extending the mapping vocabulary with more

semantics, of which an example is shown in the listing below. The listing shows how a

date part could be mapped on different types of concrete widgets, or even on a template

containing a user interface pattern. More on templates can be found in Section 7.4.3

Vocabularies can be used to tailor UIML to the needs of specific deployment plat-

forms. For example, Harmonia has developed vocabularies for Java, C++/Motif,

HTML, WML, and VoiceXML. Harmonia also developed a generic vocabulary that

uses abstract component classes and properties to describe visual interfaces (Ali et al.,

2002). Such a generic vocabulary allows mappings to be defined from the abstract

class and property names to multiple platform-specific widget toolkits. This approach

enables a single UIML file to be mapped to multiple platforms without rewriting it.

To accommodate other user interface toolkits, one only needs to define an appropriate

vocabulary.

www.manaraa.com

148 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

<uiml:d-class id=‘‘Date’’ used-in-tag=‘‘part’’ maps-type=‘‘class’’>
<xsl:choose>
<xsl:when test=‘‘expression1">
<uiml:maps-to name=‘‘Gtk:Label’’>

<uiml:d-property id=‘‘date’’ maps-type=‘‘setMethod’’ maps-to=‘‘Text.Concat’’>
<uiml:d-param name=‘‘day’’ type=‘‘int’’/>
<uiml:d-param name=‘‘month’’ type=‘‘int’’/>
<uiml:d-param name=‘‘year’’ type=‘‘int’’/>

</uiml:d-property>
<uiml:d-property id=‘‘selectable’’ maps-type=‘‘setMethod’’ maps-\\

to=‘‘Selectable’’>
<uiml:d-param type=‘‘bool’’/>

</uiml:d-property>
...

</uiml:maps-to>
</xsl/when>
<xsl:when test=‘‘expression2">
<uiml:maps-to name=‘‘Gtk:Calender’’>

<uiml:d-property id=‘‘date’’ maps-type=‘‘setMethod’’ maps-to=‘‘Date’’>
<uiml:d-param name=‘‘day’’ type=‘‘int’’/>
<uiml:d-param name=‘‘month’’ type=‘‘int’’/>
<uiml:d-param name=‘‘year’’ type=‘‘int’’/>

</uiml:d-property>
<uiml:d-property id=‘‘selectDay’’ maps-type=‘‘setMethod’’ maps-\\

to=‘‘SelectDay’’>
<uiml:d-param type=‘‘System.Int’’/>

</uiml:d-property>
...

</uiml:maps-to>
</xsl:when>
...
<xsl:otherwise>

<uiml:maps-to name=‘‘mytemplate’’ source="\#mytemplate1" how=‘‘replace’’ />
</xsl:otherwise>

</xsl:choose>
...

Figure 7.4 Listing of mapping of a date part on types of concrete widgets

7.3 TOOLS FOR AND EXTENSIONS OF UIML

The benefits of a language cannot be realized without a set of tools designed to utilize

the language. Therefore a set of commercial and non-commercial tools and applica-

tions based on UIML have been produced to serve different developer communities.

These tools are all based on the UIML specification and are available for a wide range

of markets and different types of end-users: this section describes UIML-based tools

that range from high-quality commercial-level products on the one hand to highly ex-

perimental and open source software on the other hand.

7.3.1 LiquidAppsTM

Harmonia’s LiquidAppsTM product suite is a comprehensive development and deploy-

ment environment for the rapid assembly of applications. Using LiquidAppsTM, appli-

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 149

Product Name Capability

Integrate
uReuseTM Analyze legacy resources to expose interface;

encapsulate for Flex

uInventoryTM Create and search module and transform li-

brary with metadata

uGlueTM Create data transformations

Develop
uDevelop R© Design HCIs with library modules, hook up

services, link to process

uRenderTM Implement graphic design of HCI to variety of

target devices

uTestTM Test automatically using scenario-driven re-

gression testing across platforms

Manage
uMeasureTM Collect metrics on key/mouse movement; an-

alyze human; estimate processing time

uManageTM Manage versions; integrate with requirements,

configuration. & project management

uLearnTM
Emit automatically training parts generated

from & synchronized to business process,

ready for flushing out; emit technical manuals

Table 7.2 Definition of LiquidAppsTM components

cations are composed from an ecosystem of reusable application components. These

components can be custom built, assembled from other more primitive components, or

extracted from existing systems. LiquidAppsTM utilizes UIML to describe all aspects

of an application’s interface and connection to the presentation logic. LiquidAppsTM

began life as LiquidAPPSTM, a UI development environment based solely on UIML.

Now, it retains its HCI focus while extending the lessons learned with UIML to the

rest of the application development process.

LiquidAppsTM serves as a testbed for the application of UIML in multiple facets

of the UI design and development lifecycle. The product suite implements a forward-

looking vision to provide comprehensive support for all aspects of rapid application

development and integration into the software lifecycle, with a focus on the user’s HCI

experience. LiquidAppsTM has been used for UI prototyping in major Defense appli-

cations. In addition, LiquidAppsTM users include the US Navy, prime US Govern-

ment contractors, the US Department of Energy, the automotive multimedia interface

collaboration (AMI-C, www.ami-c.org), and European consumer electronics man-

ufacturer Beko Elektronik. The LiquidAppsTM suite consists of the products shown

in Table 7.2.

www.manaraa.com

150 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Each product in the LiquidAppsTM suite provides a different avenue of exploration

that helps to test the limits of UIML’s utility and function. The individual tools gener-

ally fall into the following three categories:

1. Integration Products: products in this category focus on extracting reusable

modules from existing software systems and allowing them to be assembled

and reused in new UIs.

2. HCI Development Products: these tools provide mechanisms for creating UIML

UI descriptions and synchronizing these descriptions to software engineering

design artifacts. Deployment tools then take the UIML descriptions produced

by other products and create deployable UIs from them. For example, products

in this category could take a UIML file and automatically produce C++ source

code for the UI.

3. Management Products: products in this category synchronize the UI description

to training development, version control, and performance measurement. This

helps to ensure that designs produced using the tool adhere to a user-centered

methodology and provide the appropriate supplemental functionality to inte-

grate into all aspects of the HCI design and software engineering process.

Trial versions of LiquidAppsTM can be requested from http://www.
harmonia-inc.com/products/index.php.

7.3.2 SketchiXML

Among the various tools which are compliant with UIML, there also exists a sketching

tool where a designer is able to sketch a graphical user interface (Figure 7.5) and

to export it in UIML in order to automatically generate its code. This software is

called SketchiXML (Coyette and Vanderdonckt, 2005) and can be downloaded from

http://www.usixml.org/. Figure 7.5 reproduces a typical sketching sessions

where various UI elements are provided. This sketching tool addresses the following

requirements for quickly producing a very first UI prototype.

Indeed, designing “the” right UI is very unlikely to occur the first time, even with

experience. Instead, UI design is recognized as a process that is intrinsically open

(new considerations may appear at any time), iterative (several cycles are needed to

reach an acceptable result), and incomplete (not all required considerations are avail-

able at design time). Consequently, means to support early UI design have been ex-

tensively researched to identify appropriate techniques such as paper sketching, pro-

totypes, mock-ups, diagrams, etc. Most designers consider hand sketches on paper as

one of the most effective ways to represent the first drafts of a future UI. This kind of

unconstrained approach presents many advantages: sketches can be drawn during any

design stage, it is fast to learn and quick to produce, it lets the sketcher focus on basic

structural issues instead of unimportant details (e.g., exact alignment, typography, and

colors), it is very appropriate to convey ongoing, unfinished designs, and it encourages

creativity, sketches can be performed collaboratively between designers and end-users.

When the sketch is close enough to the final UI, an agreement can be signed between

the designer and the end-user, thus facilitating the contract and validation.

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 151

Figure 7.5 A general screen-shot of the sketching tool

Figure 7.6 Various alternative representations of the same widget (here, a slider)

The first step in SketchiXML consists of specifying parameters that will drive the

fidelity prototyping process: the project name, the input type (i.e., on-line sketching

or off-line drawing that is scanned and processed in one step), the computing platform

for which the UI is prototyped (a predefined platform can be selected such as mobile

phone, PDA, TabletPC, kiosk, ScreenPhone, laptop, desktop, wall screen, or a custom

one can be defined in terms of platform model), the output folder, the time when the

recognition process is initiated, the intervention mode of the usability advisor (man-

ual, mixed-initiative, automatic), and the output quality stating the response time vs.

quality of results of the recognition and usability advisor processes. After that, the

designer is free to naturally draw virtually anything on the sketching area. Depending

on the parameters, what you sketched is all that you get (the sketch remains drawn

as is, thus preserving the naturalness of its role) or what you sketched is what will

be recognized (in this case, a shape recognition engine detects a familiar shape like a

widget, an image, a frame, and transforms it into its real counterpart, thus producing

more precise specifications). It is not mandatory to sketch only widgets which are

recognized: another representation of the same widget could be accommodated or the

initial one (Figure 7.6).

Slider

www.manaraa.com

152 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 7.7 Example interface sketch

Figure 7.8 An example of a UI for a PDA and its corresponding UIML code

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 153

7.3.3 UIML.net: a UIML Renderer for .NET Architecture

UIML.net is a highly dynamic open source UIML rendering engine that interprets and

transforms a UIML document into a concrete working user interface. The UIML.net

renderer was created to cope with a wide range of devices and to minimize the effort

required to support new devices or platforms (Luyten and Coninx, 2004). To accom-

plish this, vocabularies (or peers) are loaded and processed at run-time by the renderer

instead of preprogrammed in the renderer software. The rendering engine queries the

vocabulary while rendering the user interface so no widget-set or platform-specific

information needs to be included in the rendering software itself. Instead, the map-

pings defined in the vocabulary are interpreted at runtime and loaded on demand. If

a vocabulary is changed, a user interface rendered with this vocabulary will be au-

tomatically adapted according to the altered mapping rules and presented using the

appropriate concrete widgets. This approach allows for a more sustainable user inter-

face over time: while platforms and devices evolve, a UIML document can be easily

reused. However, the UI rendered from the UIML document also takes advantage of

the changes.

A prerequisite for the renderer to work is the availability of a virtual machine on the

target device. Although the original UIML.net implementation was developed for the

Microsoft .Net framework (both the standard framework and the compact framework),

there is also a Java implementation based on the .Net implementation. Since most

mobile and embedded devices support a Java or .Net virtual machines, UIML.net is

almost ubiquitous. Our implementation is built in such a way that there are no further

dependencies on exactly which version or type of virtual machine, it simply relies

on the virtual machine as a dynamic execution environment that allows loading new

functionality on demand while running the user interface. This enables us to support

multiple mapping vocabularies on-the-fly.

The architecture of UIML.net consists of a rendering core and multiple rendering

backends that contain code that is only used by specific vocabularies. A rendering

core can process a UIML document and builds an internal representation of the UIML

document. Notice that the mappings from abstract interactors to concrete widgets are

defined in the peers section (the vocabulary) of a UIML document. Since the mapping

information is provided from outside of the renderer, it can be loaded dynamically

and applied at runtime to the rendering core. The rendering backends have a very

limited responsibility: they process the parts of a UIML document that can rely on

widget-set specific knowledge. Although this seems to break with the promise of

being a ubiquitous rendering engine, the specific rendering backends are not required

to create a working user interface. They provide access to platform specific widgets

which is often required to create an optimal user experience for a specific platform.

The reflection mechanism allows using the information from the vocabulary to detect

and load the required widgets at runtime without any platform-specific code. This

approach overcomes the limitations of a generic vocabulary by allowing the designer

to also use widget-set specific parts.

Once UIML.net has processed the UIML document, an internal representation of

the document is built as a set of objects structured as an in-memory tree which can

be rendered at any time without further transformations. This internal representation

www.manaraa.com

154 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

is similar to a Document Object Model tree, and is accessible by an internal API. We

define a concrete instantiation of a UIML document as a set of objects that represent

the in-memory tree of a UIML document where each object that represents a UIML

part has a reference to a final widget on the target platform. A concrete instantiation is

the result of executing the mapping rules included in the vocabulary without rendering

the user interface on screen. A concrete instantiation can be used to perform post-

processing operations that will be discussed in the following paragraphs.

The UIML.net renderer uses several stages, where each stage processes a certain

aspect of the UIML document. UIML.net uses three different stages of processing that

are required for a flexible ubiquitous rendering engine:

preprocessing: during this stage a UIML document can be transformed into

another UIML document. For example; the style properties of the user interface

can be changed to avoid using green and red for users suffering from color

blindness.

main processing: during this stage a UIML document will be interpreted and

a concrete instantiation of the document using the UI toolkits that are available

on the target platform will be generated.

post-processing: during this stage the runtime behavior strategies of the UI will

be selected. For example; the instantiated layout can be changed to optimize the

user experience.

The main processing stage is more specifically composed out of the following steps;

The UIML-renderer takes a UIML document as input, and looks up the render-

ing backend library that is referred to in the UIML document.

An internal representation of the UIML document is built. Every part element

of the document is processed to create a tree of abstract interface elements.

For every part element, its corresponding style is applied.

For every part element, the corresponding behavior is attached and the required

libraries to execute this behavior will be loaded just-in-time.

The generated tree is handed over to the rendering module: for every part tag,

a corresponding concrete widget is loaded according to the mappings defined

in the vocabulary and linked with the internal representation. For the gener-

ated concrete widget, the related style properties are retrieved, mapped by the

vocabulary to concrete widget properties and applied on the concrete widget.

7.3.4 DISL: A Modality-Independent UIML-Variant for Limited Devices

Within a project to develop an architecture that allows the provision and management

of user interfaces for different devices and modalities—potentially in a multimodal

setting—the Dialog and Interface Specification Language (DISL) has been established

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 155

(Mueller et al., 2004). DISL can be considered as a modified subset of UIML 4.0 and

has been designed with the following two major goals in mind:

The language should be generic enough to be independent of platforms, devices

and even modalities.

The language should be supportive of devices with limited processing and mem-

ory capabilities.

UIML itself could be modality independent, as the interface description itself can

be done quite generic and the vocabularies are used to map the user interface to specific

targets. However, either, a range of vocabularies is needed and the right target platform

is selected at runtime as done for example in Luyten et al. (2006), see Section 7.3.3, or

a multistage process to map abstract interfaces to more concrete instances is advisable

like the process defined in (Ali et al., 2002).

Anyway both approaches require the definition of several mapping vocabularies.

With DISL, the opposite strategy was selected, which means that DISL does not pro-

vide the mappings but relies either on an external transcoding process or a dedicated

DISL renderer on the target device. So instead of assigning a class to a part which con-

nects to the peers section, a fixed set of generic widgets (inspired by a generic vocab-

ulary for graphical and speech-driven applications (Plomp and Mayora-Ibarra, 2002)

and the concept of abstract interaction objects (Vanderdonckt and Bodart, 1993)) can

be used with a special attribute of the part. The choice of generic widgets was mainly

limited to those allowing input with and without data, output with or without data,

confirmations, choices, and logical grouping.

In addition, the communication with the backend logic was simplified, so that only

calls to a remote or local peer are supported within the action part, e.g., through HTTP

or RMI. Again, the communication method relies on the implementation of the ren-

derer and does not have to be modeled separately.

Through these means, the peers section is obsolete, which decreases the language

complexity and the size of concrete instances dramatically. However, this was a de-

sign decision for DISL and the selected generic widgets could be implemented with a

proper vocabulary in UIML just as well.

Even though DISL is as such simpler than UIML, UI descriptions in DISL still

consume a lot of memory (at least from the limited device perspective) and parsing a

complex tree structure can soon outrun the maximum stack- or heap size of the under-

lying system. For this reason a serialized format (S-DISL) has been devised, which

reduces size and complexity of an original DISL document without losing informa-

tion. The number of tags is reduced through following means:

1. Merging of child elements into the parent tag

2. Place union of tags that require the same evaluation semantic

3. Discarding structural tags with no semantic meaning

The first method can be applied to elements where the number of children is finite

and static. In that case, the child elements can be converted to a set of attributes for the

www.manaraa.com

156 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

parent element. The second method applies the same principle as the first one but is

used to combine those parts that belong together with respect to the evaluation but have

been distributed for better human readability. Some very few tags may be discarded

at all as they convey no semantic meaning but just provide information for the human

editor of the DISL document (e.g., the part element for logical structuring of the user

interface). The tags for which none of the previous methods can be applied are kept

intact. The following listing shows for example a part of the collected conditions in

the SDISL format.

<cl cs="44">
<c uid="91" cid=‘‘none’’ exp=‘‘equal’’ n=‘‘no’’ tA=‘‘variable’’ oA="58"

tB=‘‘constant’’ oB=‘‘true’’/>
<c uid="92" cid=‘‘none’’ exp=‘‘equal’’ n=‘‘no’’ tA=‘‘variable’’ oA="58"

tB=‘‘constant’’ oB=‘‘false’’/>
<c uid="93" cid=‘‘none’’ exp=‘‘equal’’ n=‘‘no’’ tA=‘‘variable’’ oA="59"

tB=‘‘constant’’ oB=‘‘true’’/>
<c uid="94" cid=‘‘none’’ exp=‘‘equal’’ n=‘‘no’’ tA=‘‘variable’’ oA="59"

tB=‘‘constant’’ oB=‘‘false’’/>
. . .

</cl>

The element <cl> stands for condition list and is basically a table of all the con-

ditions that exist in the user interface description, while its attribute “cs” reveals the

number of the conditions in the list, so that the interpreter knows the size of the table

it must set up. For each element of the UI specification a unique numerical identifier

“uid” is assigned instead of the manually selected ids in DISL in order to avoid con-

flicts when sourcing templates or when dealing with several (sub) interfaces at once.

Looking at the first condition in the list, one can see that it checks for the equality of

the variable with the id ”58” and the “true”-constant.

While this encoding and resorting makes the processing of the specification easier,

the limitations of elements and restrictions with the assignment of ids provide a re-

duction of the complete interface specification, so that it is more suitable for limited

memory and slow networks. A further compression is gained after the assignment

of specific tokens for reserved words like “variable” or “constant”. The latter step

is a similar process as proposed with binary XML (Martin and Jano, 1999). With

these concepts applied, an SDISL renderer has been successfully implemented on a

first-generation J2ME-enabled mobile phone (Mueller et al., 2004) and currently 32k

Smart Cards are employed to carry complete additionally gzipped SDISL UI descrip-

tions, embedded in a secure architecture (Schaefer et al., 2007).

7.4 IMPROVEMENTS TO UIML FOR VERSION 4.0

Having shown the goals and properties of the different available UIML tools, it is

now time to review the most recent enhancements to the UIML specification, which

are particularly useful for a human-centered software engineering process, namely,

variables, layout management, and parametrizable templates.

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 157

7.4.1 Variables and Arithmetic for Improved Dialogs

As UIML is designed to represent all possible user interfaces and provides a clear

separation of concerns, a core part consists of the definition of the behavior, which

is analog to the dialog model in the sense of a control model in model-based user

interface development. From the first version of UIML, the behavior part provided

the possibility to specify event-based dialogs, such as reacting on a “button-pressed”

event. Furthermore the behavior could be used to define conditions which contain an

event and some associated data. A prominent example is the selection of an item in a

list box when an item-selected event fires and the value of the item can be extracted

from a property. Only if the event hits, and the value is correct, such a condition

evaluates to true and the action part can be executed. However events are transient

by nature and properties are limited to their widgets they belong to. This can be a

restriction for the UI developer in the sense that parts of the behavior which could

belong to the UI have to be delegated to the application logic. Up to version 4.0,

UIML had no means to capture and exploit information of the UI state, which allows

for more powerful dialog models. For this purpose, variables have been introduced and

together with simple arithmetic, the control model can be kept completely within the

UIML document. As a most simple example for building a UI state machine, consider

a dialog with only one button which toggles the state between on and off. The UIML

code is illustrated in Figure 7.9.

Let us focus on the behavior part. First, a Boolean variable OnOffState has been

defined, which is eventually used to capture the state of this little dialog. The fol-

lowing variables are constants for true and false which are used later for comparisons

and assignments. The actual behavior of the dialog is defined with two rules, one

for an even number of button operations and one for an odd number. Both check

whether a button has been pressed and then check if the current state matches one of

the Boolean constants (e.g., for the even case, the OnOffState variable should be equal

to the EvenValue before the action can be executed). The action part then assigns to

the OnOffVariable the inverse value in order to toggle the state. This example just

employed comparison operations and assignments, but UIML 4.0 also supports some

basic arithmetic which can be useful for several operations like counting the widget

operations, comparison with timers, input validation etc. The latter use of variables

is particularly useful in order to reduce communication with the backend logic, espe-

cially in a distributed case (e.g., client-server), and thus can add to the user acceptance,

since systems can be designed to be more responsive already at a high level.

Consider for example a part of a hotel reservation form that checks the entered

number of rooms with the policy of the hotel booking system. In this example, the

hotel requires a minimum of one room and a maximum of four rooms to be booked by

individuals.

Rooms can be entered directly in the text field or by using up- and down buttons,

as illustrated in Figure 7.10. By pressing the buttons, the new room number is imme-

diately checked and the value in the text field changed respectively. In the event the

upper or lower bounds are reached, the value in the text field does not change. By

pressing the “submit” button, the value in the text field will be submitted to the back-

end. The advantage of this method is evident when the User Interface is connected via

www.manaraa.com

158 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

<uiml>
<interface>

<structure>
<part id=‘‘button’’ class=‘‘G:Button’’/>

</structure>
<style>
<property part-name=‘‘button’’ name=‘‘g:text’’>ON/OFF</property>

</style>
<behavior>
<variable id=‘‘OnOffState’’ type=‘‘boolean’’ reference=‘‘false’’>

false
</variable>
<variable id=‘‘TrueValue’’ constant=‘‘true’’ type=‘‘boolean’’

reference=‘‘false’’>
true

</variable>
<variable id=‘‘FalseValue’’ constant=‘‘true’’ type=‘‘boolean’’

reference=‘‘false’’>
false

</variable>
<!-- If state == true and button pressed then state = false -->
<rule id=‘‘buttonPushedEvent’’>

<condition>
<op nam=‘‘and’’>

<event part-name=‘‘button’’ class=‘‘g:actionperformed’’>
<op name=‘‘equals’’>

<variable id=‘‘OnOffState’’/>
<variable id=‘‘TrueValue’’/>

</op>
</op>

</condition>
<action>
<variable id=‘‘OnOffState’’>

<variable id=‘‘FalseValue’’/>
</variable>

</action>
</rule>
<!-- If state == false and button pressed then state = true -->
<rule id=‘‘buttonPushedOdd’’>

<condition>
<op nam=‘‘and’’>

<event part-name=‘‘button’’ class=‘‘g:actionperformed’’>
<op name=‘‘equals’’>

<variable id=‘‘OnOffState’’/>
<variable id=‘‘FalseValue’’/>

</op>
</op>

</condition>
<action>
<variable id=‘‘OnOffState’’>

<variable id=‘‘TrueValue’’/>
</variable>

</action>
</rule>

</behavior>
</interface>
<peers>

<presentation base=‘‘Generic_1.2_Harmonia_1.0">
</peers>

</uiml>

Figure 7.9 UIML code of the simple UI state machine example

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 159

Figure 7.10 Room reservation form and corresponding state machine

<rule id=‘‘upButtonPressed>
<condition>

<op name=‘‘and’’>
<event part-name=‘‘buttonUP’’ class=‘‘g:actionperformed’’>
<op name=‘‘lessthan’’>

<variable id=‘‘curNoRooms’’/>
<variable id=‘‘maxNoRooms’’/>

</op>
</op>

</condition>
<action>

<op name=‘‘add’’>
<variable id=‘‘curNoRooms’’/>
<variable id=‘‘step’’/>

</op>
<property part-name=‘‘editRooms’’ name=‘‘g:text’’>

<variable id=‘‘curNoRooms’’/>
</property>

</action>
</rule>

Figure 7.11 Part of the UIML code for the room reservation

a network to the backend logic. By checking valid values on the client side no retrans-

missions are required. This is equivalent to HTML-forms, where JavaScript would be

used to check the input prior submission. The code fragment of Figure 7.11 shows

how the input validation with the “up”-button works in UIML 4.0.

The condition checks if the “up”-button has been pressed and if the value of the

variable curNoRooms is lower than the maximum allowed. Only if both is the case,

the action-part can be processed in this case, simple arithmetic is used with the add

operator which increments curNoRooms with the value of the variable step, which has

www.manaraa.com

160 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

been assigned to one beforehand. Additionally, the value in the text box is updated, as

the property of editRooms is assigned the value of the variable curNoRooms.

Similarly to this rule, rules for checking the down button, direct text entry and sub-

mitting the data have to be established. Of course care has to be taken that this concept

is not misused to move parts of the application logic into the UI description, but con-

sidering that building program structures with XML is quite cumbersome, the risk is

low that UI developers and application developers will produce conflicting overlaps.

7.4.2 Platform-Independent Layouts

UIML achieves abstraction in many ways. The specification of user interface ele-

ments, interaction, content, and the application logic are all platform-independent.

However, the 3.0 version of the UIML specification has no support for flexible lay-

out management, which results in platform-specific layout adjustments to be made by

the designer for each of the target devices. UIML 4.0 supports a flexible layout man-

agement technique that ensures consistent layouts in a wide range of circumstances.

The layout can still adjust to more extreme conditions without loosing consistency

however.

If only the common characteristics of existing layout managers were to be ex-

tracted, the resulting layout mechanism would be so general as to only be suitable

for creating very simple layouts. Ideally, the general solution should support at least

every layout that is possible by each of the layout managers that can be found for

the individual specific widget sets. The generic layout extension we introduced for

UIML 4.0 is based on the combination of spatial constraints and a constraint solving

algorithm. Spatial constraints are sufficiently powerful to describe complex layouts

(Badros et al., 2000) and allow us to offer several levels of abstractions. A spatial

constraint is a mathematical relation concerning the location or size of different ab-

stract interactors that needs to be maintained in the final user interface. The interface

designer specifies the layout by defining constraints over the different user interface

parts. This can be as simple as stating buttonA left-of labelB to indicate buttonA should

appear on the left of labelB. Left-of is an abstraction of a one dimensional mathemati-

cal relation that indicates the right side of buttonA on the horizontal axis should have a

lower value than the left side of labelB on the horizontal axis. Even simple constraint

solvers can solve these kinds of constraints.

A constraint solver can find a solution in a two- or three-dimensional solution space

that adheres to these constraints. If only a two-dimensional solution space is sup-

ported, the interactors can be laid out on a two-dimensional canvas, but cannot be put

on top of each other (e.g., in ordered tab pages or partial overlaps). The UIML.net

implementation includes Cassowary, an incremental constraint solver that efficiently

solves systems of linear equalities and inequalities (Badros et al., 2000). The con-

straint solver is available in most of the programming languages that are used to im-

plement UIML renderers and interpreters (Java, C++, C#, Python, etc. is distributed

under a free software license. Future UIML implementations should have easy access

to flexible constraint-based layout management.

Constraints are resolved on the level of the abstract interaction objects, so are

independent of the concrete representation of the widgets. Constraints allow us to

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 161

specify the layout in a declarative manner and integrate smoothly with UIML. The

designer can focus only on what the desired layout exactly is, rather than how this

layout is to be achieved. Furthermore, constraints allow partial specification of the

layout, which can be combined with other partial specifications in a predictable way.

For example, we can define that the container selection is left-of the container content.
The selection and content containers can then each on their own specify the layout of

their children. When a change in this layout requires the containers to grow, shrink or

move, the upper-level layout constraints will be reevaluated. This allows us to define

generic layout patterns (Luyten et al., 2006). These define the layout of a number of

containers, which can afterwards be filled in with a specific widget hierarchy using its

own layout specification.

Figure 7.12 shows a music player interface rendered from a UIML document. This

user interface can be used on different platforms and with different screen sizes as

shown in figure 7.13. Without the layout management extension the designer could

reuse a great deal of the UIML document for different platforms except the parts of

the UIML document concerning the layout of the final user interface. The constraint-

based layout technique solves this problem and makes it possible to reuse the interface

design completely with different widget sets for different screen sizes without any

manual intervention. If other behavior is required, a designer can still add or remove a

constraint to obtain the envisioned effect, and is no longer bothered by any platform-

specific problems while designing the interface.

Previously, designers had to specify a platform-specific layout for every instantia-

tion of the user interface. This process relied on the careful and precise manual work

of the designer in order to keep the different layouts consistent. Furthermore, this

process introduced a lot of work, because for every new target platform, the layout

had to be almost completely redesigned. The layout extension enables designers to

create new layout templates and reuse them whenever appropriate. A layout template

is nothing more than a set of layout constraints that can be applied to a set of parts

from the structure section.

7.4.3 Template Parametrization

UIML provides a template mechanism that allows defining reusable components. A

reusable component is a reusable part of the user interface: a combination of structure,

style, behavior and/or content written down in UIML. They enable interface imple-

menters to reuse part or all of their UI through the UIML <template> element. For

example, many UIs for electronic commerce applications include a credit-card entry

form. If such a form is described in UIML as a template, then it can be reused mul-

tiple times either within the same UI or across other UIs. This reduces the amount of

UIML code needed to develop a UI and also ensures a consistent presentation across

enterprise-wide UIs.

The reusability of these components can still be improved however. In this section

we describe a method to enhance the reusability of the template mechanism by allow-

ing more flexible relations between a template and its sourcing document; the part of

the user interface that embeds the template.

www.manaraa.com

162 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 7.12 Fully functional music player interface rendered on desktop computer from

UIML document

We increased the expressive power of a template definition by allowing parameters

to be passed from the sourcing document to the template. This allows a user interface

designer to create a reusable user interface component that supports variations in struc-

ture, style, content and/or behavior. The components vary according to the parameters

that are passed to it. In contrast with non-parameterized templates that provide im-

mutable user interface components, a parameterized template allows us to describe a

user interface pattern (van Welie et al., 2000). A pattern captures design knowledge

for a specific problem that can be reapplied in other contexts, such as the credit-card

entry form. Parametrized templates are very useful for describing reusable layout pat-

terns, which we discussed in the previous section. These have the same purpose as

the XUL layout patterns described by Sinnig et al. (2004). Their approach uses the

Velocity templating language to support variations in the patterns, while parametrized

templates allow this to be built into UIML.

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 163

Figure 7.13 Fully functional music player interface rendered on PDA from UIML document

As a simple example, suppose we want to define the behavior of a calculator. When

one of the buttons is pressed, the corresponding number is added to the display. The

behavior rule for this would be:

<rule>
<condition>

<event part-name=‘‘Button1" class=‘‘actionPerformed’’/>
</condition>
<action>

<property part-name=‘‘Display’’ name=‘‘text’’>
<call name=‘‘utils.concatenate’’>

<param>
<property part-name=‘‘Display’’ name=‘‘text’’/>

</param>
<param>

<property part-name=‘‘Button1" name=‘‘label’’/>
</param>

</call>
</property>

</action>
</rule>

We would need ten similar rules (one for each button), only varying in the part-

name of the button. Although this scenario seems to be ideal for a reusable template,

the 3.0 version of UIML is not capable of defining a template for these rules because

they were slightly different.

www.manaraa.com

164 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Another aspect of the template mechanism where the reusability could be improved

is the naming schemes that are used to avoid identifier duplicates when templates

are merged into the sourcing documents part tree. Each element is associated with

a fully qualified identifier, which is constructed by identifying the child’s location

in the UIML tree. The identifier is generated by starting with the <uiml>-element

and tracing downward through the tree. The original element will be prepended with

the id of every element above it in the UIML tree (e.g., “<interface id> <structure

id> <grandparent id> <parent id> <original id>”).

This creates a dependency between the sourcing document and the template, since

they need to know each other’s structure to be able to refer to the correct elements. In

the following example, a template will close the surrounding container (e.g., a win-

dow) when a certain button is clicked. It is clear that the template needs to know

about the structure of the sourcing document, and can thus not be reused in other doc-

uments. The button’s label (in this case “Close”) is also hard-coded into the template,

and cannot be easily changed.

<part id=‘‘surrounding’’ class=‘‘Container’’>
<part source="#closing’’ .../>

</part>
<template id=‘‘closing’’>

<part>
<part id=‘‘btn1" class=‘‘Button’’>

<style>
<property name=‘‘label’’>Close</property>

</style>
<behavior>

<rule>
<condition>

<event class=‘‘actionPerformed’’/>
</condition>
<action>

<property part-name=
‘‘interf1_strct1_surrounding’’ name=‘‘visible’’>

false
</property>

</action>
</rule>

</behavior>
</part>

</part>
</template>

In order to solve these issues, we introduced some concepts of traditional program-

ming languages into the template specification. By passing parameters to a template

it should be possible to establish stable, yet flexible relationships between a template

and any UIML document.

The next example shows a parametrized template for the calculator behavior rules:

<template id=‘‘calculator_rule’’>
<d-template-parameters>

<d-template-param>button</d-template-param>
</d-template-parameters>
<rule>

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 165

<condition>
<event part-name="$button’’ class=‘‘actionPerformed’’/>

</condition>
<action>

<property part-name=‘‘Display’’ name=‘‘text’’>
<call name=‘‘utils.concatenate’’>

<param>
<property part-name=‘‘Display’’ name=‘‘text’’/>

</param>
<param>

<property part-name="$button’’ property=‘‘label’’/>
</param>

</call>
</property>

</action>
</rule>

</template>

The template defines a parameter button, which will be used to fill in the correct

reference in the label property and actionPerformed event. Note that if a parameter is

used within a certain attribute, it is prefixed with a $-sign to distinguish it from normal

references. To source this template, we pass the corresponding button as a parameter

to it (in this case Button1):

<rule source=‘‘calculator_rule’’ how=‘‘replace’’>
<template-parameters>

<template-param id=‘‘button’’>Button1<template-param>
</template-parameters>

</rule>

To parametrize the example where we want to close the surrounding container in

the sourcing document, we introduce two parameters: one for the label of the button,

and one for the surrounding container:

<template id=‘‘closing’’>
<d-template-parameters>

<d-template-param>label</d-template-param>
<d-template-param>container</d-template-param>

</d-template-parameters>
<part>

<part id=‘‘btn1" class=‘‘Button’’>
<style>

<property name=‘‘label’’>
<template-param id=‘‘label’’/>

</property>
</style>
<behavior>

<rule>
<condition>

<event class=‘‘actionPerformed’’/>
</condition>
<action>

<property part-name="$container’’ name=‘‘visible’’>
false

</property>
</action>

www.manaraa.com

166 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

</rule>
</behavior>

</part>
</part>

The example shows that we can also use the parameters in any UIML tag (in this

case, inside a property tag). Finally, to instantiate this template we provide values for

the two parameters:

<part id=‘‘surrounding’’ class=‘‘Container’’>
<part source="#closing’’ ...>

<template-parameters>
<template-param id=‘‘label’’>Close</template-param>
<template-param id=‘‘container’’>

surrounding
</template-param>

</template-parameters>
</part>

</part>

In conclusion, parametrized templates improve the existing template mechanism

in UIML to allow for full reusability since they are completely independent of the

sourcing document.

7.5 UIML-RELATED STANDARDS

UIML is an answer to the question of what a declarative language would look like

that could provide a canonical representation of any UI suitable for multiplatform,

multilingual, and multimodal UIs. This section describes the influences from W3C

and other complimentary efforts on UIML, and comments on how UIML fits into

these various technologies.

7.5.1 HTML, XML, CSS, WAI, and SOAP—Inspirations for UIML

Several W3C activities in 1997—XML, HTML, CSS, and WAI—formed a catalyst of

ideas that inspired the development of UIML. At that time a group of HCI developers

in Blacksburg, Virginia, who were frustrated with the difficulty of creating UIs in

traditional imperative languages (e.g., C, C++) starting work on UIML using a number

of insights from these W3C activities.

The success of HTML by 1997 in allowing non-programmers to design UIs with

a rich user experience was a beacon of light to the team that designed the original

UIML language: Could we start fresh, and design a new declarative language power-

ful enough to describe UIs that historically were built only in imperative program-

ming languages and toolkits (e.g., C with X-windows, C++ with MFC, Java with

AWT/Swing)? Doing so would bridge the gap between HTML, which allows easy

design of UIs with limited interaction, and imperative languages, which allow design

of rich UIs but only in the hands of experienced programmers.

In 1997, the first XML conference was held. XML is a metalanguage, to which a

vocabulary of element and attribute names must be added. XML could be standard-

ized once, and was extensible because many vocabularies could be created by different

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 167

groups of people. In designing UIML we realized that if a UI language was a metalan-

guage, then it could potentially serve as a canonical representation of any UI. Hence

UIML is a metalanguage. By separately creating vocabularies for UIML, UIML could

be devoid of bias toward UI metaphors, target devices (e.g., PCs, phones, PDAs), UI

toolkits (e.g., Swing, MFC), and could be translated to various target languages (e.g.,

Java, HTML, VoiceXML).

The world was clearly on a trend to untether users from the desktop computer,

allowing them to use a plethora of devices via growing wireless technologies. UIML

recognized that a metalanguage enables the creation of UI descriptions in a device-

independent form.

Another influence by 1997 was Cascading Style Sheets, which could be viewed as

the first step to creating UI descriptions that are separated, or factored, into orthogonal

components. The factoring was again a key to device-independent descriptions of UIs.

The design of UIML started by asking what fundamentally are the orthogonal parts of

a UI. The Model-View-Controller paradigm is a three-way separation. UIML arrived

at a six-way separation (structure, style, content, behavior, APIs to components outside

the UI, and mappings to UI toolkits) (Phanouriou, 2000).

The W3C’s Web Accessibility Initiative, which also started in 1997, influenced

UIML as well. The key to making documents and UIs accessible, according to WAI,

is to capture the author’s intent. A language like HTML has ingrained into it a certain

metaphor based on the printed page. What authors need is the ability to represent a UI

using abstractions representing the semantic information they have, which cannot be

rediscovered easily from markup like HTML. Again, a metalanguage appeared to be a

key element for UIML, because an author could define and work with his or her own

abstractions in a vocabulary that the author creates.

A second influence of WAI was the recognition that scripting in HTML pages

presents an obstacle to making documents portable across devices. The lesson learned

for UIML’s designers was that the behavior of a user’s interaction with a UI should

clearly be a separable component in a UI description.

The original work on SOAP in 1998 also influenced UIML. When SOAP was first

proposed, it suggested that remote calls to objects could be done using XML. There-

fore the actions in UIML’s syntax for behavior description were designed to allow

invocation of SOAP or other XML-based remote calls.

7.5.2 HCI—Another Influence on UIML

Aside from W3C, there was one other key influence on UIML: the field of Human-

Computer Interaction (HCI). The design of UIs that work across devices requires a

good design methodology. Much work has been done in the HCI field in UI design.

There is also a body of literature called UI Management Systems, which include no-

tations to represent UIs, and these heavily influenced the design of UIML (especially

the question of how to represent user interaction with a UI in a canonical form).

Our expectation is that work on design techniques for UIs will produce a number

of tools and UI design languages. UIML was not necessarily intended as a UI design

language (although it can be used as such), but rather as a language for UI implemen-

tation. Therefore UI design tools could represent a design in a design language, and

www.manaraa.com

168 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

then transform a UI in a design language to a canonical representation for UI imple-

mentation, namely, UIML. If Integrated Development Environments (IDEs) and Web

page design tools could read UIML, then the world would have a complete path for

computer-assisted design and implementation of multiplatform UIs.

7.5.3 How UIML Fits W3C Architecture Today

Dave Raggett in his talk at the W3C Workshop on Web Device Independence (Bris-

tol, Oct. 2000) proposed that there was a need for a layer that can adapt a UI to the

particular XML language used by a target device. UIML is an element of this device

adaptation layer, but not a complete solution. For example, there may be transform al-

gorithms that transform the interface description (e.g., in UIML) to take into account

device characteristics.

Without a single canonical language to represent UIs at this layer (regardless of

whether it is UIML), then one must create transforms for multiple languages. Obvi-

ously if it is possible to have one language at this layer, the construction of reusable

transforms is simplified.

One way to apply UIML at this layer is to use multiple vocabularies with UIML,

and transform from UIML using one vocabulary to UIML using another vocabulary.

For example, one may start with a UI description using a generic vocabulary (e.g., a

vocabulary whose abstractions can be mapped to a variety of devices). Perhaps the UI

was authored with this generic vocabulary to facilitate accessibility. A transform algo-

rithm, guided by a rule base that takes into account characteristics of different devices,

can then be used to map UIML with the generic vocabulary to UIML with a vocab-

ulary specific to a particular device. This technique has been implemented to adapt

UIs to various versions of Web browsers (e.g., to give a similar appearance to UIs for

HTML 3.2 vs. HTML 4.0 browsers). The UIML produced by the Device Adaptation

layer can then be rendered to a particular XML language (e.g., by a rendering program

that compiles UIML into XHTML, or UIML into VoiceXML).

7.5.4 The Path Toward Separation in User Interfaces

The evolution of W3C specifications in the UI area has followed a path of gradually

separating a UI description into orthogonal parts:

Up until HTML 3.2, there was no separation.

In HTML4, the style was separated (via CSS and XSL-FO).

In XForms, the portion of a document that represents a form was separated.

In XML Events, events were separated.

As stated earlier, UIML separates a UI into six parts, answering these six questions:

1. What are the parts that constitute the structure of the UI?

2. What is the presentation style of the parts?

3. What is the content associated with the parts?

4. What is the behavior of the UI when a user interacts with the UI?

5. What is the API of components outside the UI with which the UI interacts?

6. What is the mapping of the vocabulary to a target UI toolkit or markup language?

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 169

These six questions are answered in UIML’s structure, style, content, behavior,

logic, and presentation elements, respectively.

Therefore this fundamental design decision in UIML is compatible with the path

being followed by W3C. UIML should provide W3C working groups with an example

of what will ultimately be reached as this path toward separation is followed in the

future.

7.6 CONCLUSION

The User Interface Markup Language (UIML) is based on the concept of using trans-

forms and mappings to extend its utility to any UI technology or toolkit. The goal

of UIML is to remove the complexity of generating the UI description and to fo-

cus on defining the mappings and transforms that enable UIML to be converted into

the appropriate deployment language. We have found that this approach improves

the software engineering aspects of UI engineering by improving reusability through

modular templates, enabling rapid prototyping by empowering the usability engineer

to produce developer level code through automated tools, and separating both concerns

within the UI design and platform idiosyncrasies from the abstract UI design.

Our experience indicates that adding layers of abstraction in the software engineer-

ing process can be especially beneficial when the systems and interfaces are complex.

In these cases, the ability to quickly and easily modify and regenerate code becomes

very important. Imagine two systems: one consists of a single dialog box while the

other consists of hundreds of such windows. Now imagine the relative cost of modi-

fying one property within each dialog of the systems. What becomes apparent is that

while modifying one dialog at the source code level is practical, the opposite is true

for trying to maintain a large system at this level. Here is where a UIML can be very

effective. It provides a way for non-programmers to take part in the maintenance of the

system at a lower overall cost to the development effort. It also opens the possibility of

structuring the UI description in such a way that each can use centralized stylesheets

and property definitions, further reducing the time required to modify the interface.

The set of computing platforms and devices is too diverse to be covered by a sin-

gle UIDL that relies on platform-specific constructs to describe all possible platforms

and devices. A metalanguage approach is essential to creating a viable, platform-

independent representation. The primary goal of UIML’s designers has been to cre-

ate such a metalanguage as an open standard for UI definition. OASIS established a

UIML Technical Committee (TC) that has examined UIML and is in the process of

standardizing the language.

Acknowledgements
A. Coyette and J. Vanderdonckt acknowledge the support of the SIMILAR Euro-

pean network of excellence (www.similar.cc) on multimodal interfaces funded

by European Commission. Part of the research at EDM is funded by EFRO (European

Fund for Regional Development), the Flemish Government and the Flemish Inter-

disciplinary Institute for Broadband Technology (IBBT). Work on the most relevant

products in the LiquidAppsTM suite is supported by NAVAIR contracts N00421-04-

C-0030, N68335-06-C-0010, and N68335-05-C-0029; NAVSEA contract N00164-06-

www.manaraa.com

170 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

C-6093; Office of Naval Research contract N00014-06-M-0047; and Missile Defense

Agency contract W9113M-06-C-0041.

References

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., and Shuster, J. E.

(1999). UIML: An appliance-independent XML user interface language. Computer
Networks, 31(11-16):1695–1708.

Ali, M. F., Pérez-Quiñones, M. A., Abrams, M., and Shell, E. (2002). Building multi-

platform user interfaces with UIML. In Kolski, C. and Vanderdonckt, J., editors,

CADUI Computer-Aided Design of User Interfaces III, Proceedings of the Fourth
International Conference on Computer-Aided Design of User Interfaces, May, 15-
17, 2002, Valenciennes, France, pages 255–266. Kluwer.

G. J. Badros, J. Nichols, and A. Boming. SCWM-an intelligent constraint-enabled

window manager. In Proc. AAAI Spring Symposium on Smart Graphics, Cam-

bridge, MA, Mar.20-22 2000. (http://scwm.mit.edu).

Coyette, A. and Vanderdonckt, J. (2005). A sketching tool for designing anyuser, any-

platform, anywhere user interfaces. In Costabile, M. F. and Paternò, F., editors,

INTERACT, volume 3585 of Lecture Notes in Computer Science, pages 550–564.

Springer.

Eisenstein, J., Vanderdonckt, J., and Puerta, A. (2001). Applying model-based tech-

niques to the development of UIs for mobile computers. In Proceedings of the 2001
International Conference on Intelligent User Interfaces, pages 69–76, New York.

ACM Press.

Hartson, H. R. and Hix, D. (1989). Toward empirically derived methodologies and

tools for human-computer interface development. International Journal of Man-
Machine Studies, 31(4):477–494.

Limbourg, Q. and Vanderdonckt, J. (2004). UsiXML: A user interface description

language supporting mul-tiple levels of independence. In Matera, M. and Comai,

S., editors, Engineering Advanced Web Applications, pages 325–338. Rinton Press,

Paramus.

Luyten, K. and Coninx, K. (2004). UIML.NET: an open UIML renderer for the.net

framework. In Jacob, R. J. K., Limbourg, Q., and Vanderdonckt, J., editors, CADUI,
pages 257–268. New York: Kluwer.

Martin, B. and Jano, B. (1999). Wap binary xml content format. World Wide Web

Consortium. W3C NOTE.

Mueller, W., Schaefer, R., and Bleul, S. (2004). Interactive multimodal user interfaces

for mobile devices. In HICSS.

Phanouriou, C. (2000). UIML: A Device-Independent User Interface
Markup Language. Ph.D. thesis, Vermont University. Available at

http://scholar.lib.vt.edu/theses/available/etd-
08122000-19510051/unrestricted/PhanouriouETD.pdf.

Puerta, A. R. and Eisenstein, J. (2002). XIML: a common representation for interac-

tion data. In IUI, pages 216–217.

Schaefer, R., Mueller, W., López, M., and Sánchez, D. (2007). Device independent

user interfaces for smart cards. Technical report, C-LAB Report.

www.manaraa.com

HUMAN-CENTERED ENGINEERING WITH UIML 171

Vanderdonckt, J. and Bodart, F. (1993). Encapsulating knowledge for intelligent auto-

matic interaction objects selection. In Proceedings of ACM INTERCHI’93 Confer-
ence on Human Factors in Computing Systems, Amsterdam, pages 424–429. ACM

Press.

Zimmermann, G., Vanderheiden, G. C., and Gilman, A. S. (2002). Universal remote

console - prototyping for the alternate interface access standard. In Carbonell, N.

and Stephanidis, C., editors, User Interfaces for All, volume 2615 of Lecture Notes
in Computer Science, pages 524–531, Springer.

www.manaraa.com

8 MEGAMODELING AND

METAMODEL-DRIVEN ENGINEERING

FOR PLASTIC USER INTERFACES:

MEGA-UI
Jean-Sébastien Sottet,

Gaelle Calvary, Jean-Marie Favre, and Joëlle Coutaz

Laboratoire d’Informatique de Grenoble

Abstract. Models are not new in Human Computer Interaction (HCI). Consider all

the Model-Based Interface Design Environments (MB-IDE) that emerged in the 1990s

for generating User Interfaces (UI) from more abstract descriptions. Unfortunately,

the resulting poor usability killed the approach, burying the models in HCI for a long

time until new requirements sprung, pushed by ubiquitous computing (e.g., the need

for device independence). These requirements, bolstered by the large effort expended

in Model-Driven Engineering (MDE) by the Software Engineering (SE) community,

have brought the models back to life in HCI. This paper utilizes both the know-how

in HCI and recent advances in MDE to address the challenge of engineering Plastic

UIs, i.e., UIs capable of adapting to their context of use (User, Platform, Environment)

while preserving usability. Although most of the work has concentrated on the func-

tional aspect of adaptation so far, this chapter focuses on usability. The point is to ac-

knowledge the strength of keeping trace of the UI’s design rationale at runtime so as to

make it possible for the system to reason about its own design when the context of use

changes. As design transformations link together different perspectives on the same

173

www.manaraa.com

174 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

UI (e.g., user’s tasks and workspaces for spatially grouping items together), the paper

claims for embedding a graph that depicts a UI from different perspectives at runtime

while explaining its design rationale. This meets the notion of Megamodel as pro-

moted in MDE. The first Megamodel was used to make explicit the relations between

the core concepts of MDE: System, Model, Metamodel, Mapping, and Transforma-

tion. When transposed to HCI, the Megamodel gives rise to the notion of Mega-UI that

makes it possible for the user (designer and/or end-user) to browse and/or control the

system from different levels of abstraction (e.g., user’s tasks, workspaces, interactors,

code) and different levels of genericity (e.g., model, metamodel, meta-metamodel).

Yet, a first prototype (a rapid prototyping tool) has been implemented using general

MDE tools (e.g., EMF, ATL). So far, the effort has been directed on the subset of the

graph that links together different perspectives on the same UI including its mapping

on the platform. Via an Extra-UI, the designer controls the UI’s molding and distribu-

tion based on a library of self-explanative transformations. Extra-UIs were previously

called Meta-UIs. But as Meta is confusing with the same Meta prefix in MDE, we

prefer the prefix Extra to assess there is no change of level of genericity. By contrast,

the Meta-UI manipulates upper levels of genericity (Meta levels in MDE) for making

it possible for the user (designer and/or end-user) to observe and/or define languages

for specifying UIs and Meta-UIs. Meta-UIs is the next step in our research agenda.

Mega-UI is the overall UI that encompasses UIs, Extra-UIs, and Meta-UIs.

8.1 INTRODUCTION

“Bridging the gap between Software Engineering (SE) and Human Computer Interac-

tion (HCI)” is an old and recurrent slogan that clearly points out the lack of integration

between the two disciplines. The different backgrounds and concerns probably explain

the two parallel roads that have been followed so far. Nevertheless, there is a shared

agreement that a tighter coupling would favor the tuning of unifying and powerful

methods and tools. It seems to be the case today with Model-Driven Engineering

(MDE) which the two communities seem to adhere to. MDE is becoming increasingly

popular, reaching the point where “model-driven” or “model-based” prefixes have be-

come buzzwords. In SE, the MDE trend took root in 2000 with the publication of

the Model Driven Architecture (MDA) standard from the Object Management Group

(OMG). In fact, MDA is a complex set of industrial evolving standards, and at the

same time a grand-vision for the decades to come. Current approaches try to depart

from this very technological root and dependence from the OMG, some of the core

ideas being retained and seeking more generality. In recent years, a balanced under-

standing has emerged among the MDE community, and techniques are now available

to support the first steps of this long-term vision. In the meantime, the HCI community

was waiting up, as modeling is there an old tradition but not always a good memory.

Models are not new in HCI. In the 90s, the dream was to automatically generate UIs

from more abstract descriptions. Many tools appeared (such as ADEPT, Johnson et al.,

1993, TADEUS, Elwert and Schlungbaum, 1995, FUSE, Lonczewski and Schreiber,

1996, and AME, Martin, 1996) but failed because of a series of drawbacks (Myers

et al., 2000):

www.manaraa.com

MEGA-UI 175

Developers had to learn a new specification language.

The connection between the specification and the resulting code was hard to

understand and control.

The generated UIs were constrained by the underlying toolkit, depriving design-

ers of any originality.

Generators were rigid “black boxes” without any tuning of the generation pro-

cess. As a result, the usability of the generated UIs was unpredictable and quite

low.

These failings killed the model-based approach definitively. Models were just appre-

ciated for exploring design spaces (Luo et al., 1993) or for contemplatively supporting

the design process. Experience shows that industry still remains code-centric and that

models still fit in the contemplative category in HCI: of course models help in reason-

ing, of course they might look nice, nevertheless in practice developers love coding

above all. So, “why would MDE succeed now where it has failed in the same domain

in the past?”

When reconsidering model-based approaches in HCI, we must be vigilant not to re-

produce past experience. Of course, new requirements have emerged, pushed by ubiq-

uitous computing (e.g., the need for device independence). Nevertheless, if model-

based approaches have failed on the simplest interactive systems, why would they

succeed on more complex ones? Our answer is threefold: (1) take advantage of MDE

arsenal of concepts and tools, (2) rebalance model-based approaches in considering

Transformations as well, (3) put the user in the loop for mastering the resulting UIs.

This paper argues for these three principles on the specific case of Plastic User

Interfaces. Plasticity is concerned with device independence that was one of the fields

(Myers et al., 2000) pointed out as key for digging up models in HCI. Section 8.2 is

devoted to plasticity. It elicits the SE issues on a small running example called HHCS

(Home Heating Control System). HHCS supports the illustration all over the paper.

Section 8.3 gathers MDE advances for addressing plasticity. The core concepts are

put in practice in Section 8.4 giving rise to a taxonomy of UIs: UI, Extra-UI, Meta-UI

and Mega-UI. This taxonomy opens new doors in HCI, shifting the horizon further.

Section 8.5 is devoted to these perspectives and challenges.

8.2 PLASTICITY: CASE STUDY AND ENGINEERING ISSUES

The term plasticity is derived from the capacity of solids and biological entities such

as plants and brain, to adapt to external constraints so as to preserve continuous usage.

Applied to HCI, UI’s plasticity is the capacity of UIs to adapt to the context of use

while preserving usability (Thevenin, 1999). By context of use, we mean a triplet

<User, Platform, Environment> where:

The User denotes the archetypal person who is intended to use, or is actually

using, the interactive system. This includes profile, idiosyncrasies, tasks, and

activities.

www.manaraa.com

176 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

The Platform describes the computing, sensing, networking, and interaction re-

sources that bind together the physical environment with the digital world.

The Environment makes reference to the physical space where the interaction

will take place, or is actually taking place. This includes numeric and/or sym-

bolic locations (e.g., at home, in a public space, on the move in the street, in the

train or car), social rules and activities, light, heat, and sound conditions.

As the platform is no more limited to a unique computer but becomes a cluster of

maybe heterogeneous and dynamic elementary platforms (e.g., a PC and a PDA),

adaptation is much more complex than selecting the most appropriate modality when

the context of use changes. Now, UIs can be distributed among a set of elementary

platforms and can migrate according to the arrival and departure of resources. As a

result, there are two means for adapting a UI to its context of use: remolding and

redistribution.

Remolding consists in reshuffling the UI without changing its distribution state

among the available resources (e.g., compacting radio buttons in a combo-box

without migrating part or all of the UI; switching from vocal to graphics when

entering into a public space). Clearly, modality and multimodality provide

means for remolding.

In contrast, redistribution changes the allocation of the UI’s elements among

the available resources (e.g., migrating all of the input tasks from a PC to a

PDA in order to get a remote controller; migrating all of the UI from a PDA

to a PC when the PDA’s battery is low). In case of heterogeneous resources,

redistribution may require a remolding.

8.2.1 Case Study

The case study is about controlling comfort at home using different devices ranging

from dedicated wall-mounted displays to Web browsers. Figure 8.1 presents four Web

UIs depending on the screen size, the number of rooms, as well as the usability prop-

erties that the HCI designer has elicited as key:

In Figure 8.1a–c, the rooms are browsable wheras they are directly observable

in Figure 8.1d. Browsability has a human cost: it is physically and cognitively

demanding to select a room (one physical action per room) and compare tem-

peratures. If human workload has been elicited as key, then browsability is not

a good option — except if the number of rooms is not limited (e.g., twenty

rooms) and the display surface is not extendable. In that case, the designer

has to prioritize the different facets of workload (Card et al., 1983): motor

(for navigating between rooms), cognitive (for memorizing temperatures), but

also perceptual as the information density will increase with the number of

rooms. Human Workload is one ergonomic criterion in Bastien and Scapin’s

framework (Bastien and Scapin, 1991). In this framework, another criterion is

Guidance. Guidance is refined into four subcriteria among wich is the Group-

ing/Distinction among items. With regard to this subcriterion, Figure 8.1a–c are

www.manaraa.com

MEGA-UI 177

Figure 8.1 Four functionally equivalent UIs that differ from the set of usability criteria

valuable as one workspace is associated per task: the left one for selecting the

room, the right one for specifying the desired temperature of the selected room

Figure 8.1-b enhances Figure 8.1-a with the observability of both the temper-

ature unit (◦C) and the range of possible values (from 15 to 18). With regard

to Bastien-Scapin’s Guidance ergonomic criterion, this enhancement is a good

point for improving Prompting (one of the four Guidance subcriteria). Prompt-

ing might reduce the risk of error

Figure 8.1-c goes one step further in shielding the user against error thanks

to combo-boxes. Error management is one ergonomic criterion in Bastien-

Scapin’s framework. It is decomposed into three subcriteria among which is

Prevention against error.

In contrast to Figure 8.1a-b-c that are clearly task-driven, Figure 8.1d is more

concept-driven. User’s tasks are considered as operations that are applicable to

the concepts. The Grouping/Distinction among items is led by concepts: one

workspace is associated per room, and it is in charge of supporting all the tasks

that are applicable to the concept. Figure 8.2 is an alternative of Figure 8.1d.

It improves Bastien and Scapin’s Compatibility criterion thanks to a clickable

map of the house. Whilst all of the UIs in Figure 8.1 are coded, Figure 8.2 is

only a hand-made mock-up.

Clearly, the task driven UIs presented in Figure 8.1a–c are more distributable than

the ones depicted in Figure 8.1d and 8.2. Figure 8.3 shows an example where the task

Select a room has migrated to the PDA. The redistribution has triggered a remolding:

hyperlinks have been replaced with radio-buttons.

www.manaraa.com

178 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 8.2 A hand made mock-up similar to Figure 8.1d, but that improves the Compat-

ibility criterion thanks to a clickable map of the house

Figure 8.3 A distributed version of HHCS: selecting a room is done on the PDA the

temperature is specified on the PC

www.manaraa.com

MEGA-UI 179

The distributable feature of a UI is not an ergonomic criterion yet. It can be hosted

under the umbrella of Grouping/Distinction among items, the means being an alloca-

tion on different platforms. But clearly, usability frameworks remain mostly general,

implicitly focusing centralized UIs (e.g., Bastien and Scapin, 1991; Shackel, 1991;

Abowd et al., 1992; Dix et al., 1993; Nielsen, 1994; Preece et al., 1994; IFIP, 1996;

Shneiderman, 1997; Constantine and Lockwood, 1999; Van Welie et al., 1999; as well

as Seffah et al., 2006, who propose QUIM, a unifying structure to reconcile existing

frameworks). Thus, new properties such as Continuity (Trevisan et al., 2003), Detach-

ability (Grolaux et al., 2005), Migratability (Grolaux et al., 2004) or Plasticity have

still not been integrated into usability frameworks either from a system-centered per-

spective or from a user-centered perspective. As a result, when reasoning on usability,

we promote an open approach that lets the framework open so that designers can take

benefit from new ones or use their favorite one.

The next section considers SE issues when engineering plastic UIs. Issues are

illustrated on the case study.

8.2.2 Software Engineering Issues

Engineering UIs is a series of trade-offs conciliating functional and non-functional

requirements. Whatever the approach is (forward engineering, sketching, reverse en-

gineering, etc. Calvary et al., 2003), the design process takes, at least implicitly, into

account a specification of both the targeted context of use and the expected quality

among which is the quality in use (Calvary et al., 2004). The problems in ubiquitous

computing are that:

The context of use is no more fixed, set at design time, but may be variable and

unforeseeable, typically depending on the arrival and departure of platforms that

have not necessarily been envisioned at design time.

The quality in use is no more intrinsic to the UI but may depend on the

user’s experience, typically taking into account inter-usability issues (Denis and

Karsenty, 2004).

The quality in use is no more intrinsic to the UI but may depend on the user’s experi-

ence, typically taking into account inter-usability issues (Denis and Karsenty, 2004).

Interactive systems: the one under study and all other ones.

The underlying infrastructure: the middleware and the reusable components

(models and/or pieces of code of both UIs and UIs transformers).

Human actors: end-users but perhaps also designers.

Thus, based on an understanding of the user’s needs, all of the stakeholders collaborate

in order to produce the best UI given internal capabilities and external constraints (the

current context of use, the expected quality in use, the past user’s experience and

perhaps his/her future envisioned needs).

In a similar approach, the interactive system handles the adaptation alone. This

means perceiving the context of use, detecting situations that require adaptation, com-

puting a reaction, and generating the appropriate UI (Balme et al., 2004). In an open

www.manaraa.com

180 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

approach, the tiers take over all of the process. In a mixed approach, there is a col-

laboration between the interactive system and another software stakeholder at least for

either complementing each other (see the CARE Complementarity property (Coutaz

et al., 1995)) or improving the quality of the decision process (CARE Redundancy).

Open adaptation requires that the UI provides the world with management mecha-

nisms. Management mechanisms include self-descriptive meta-data (such as the cur-

rent state, the services it supports and requires), and the methods to control its behavior

such as start/stop and get/set-state. As plasticity may occur at any level of abstraction

ranging from domain-dependent Concepts and Tasks to rendering concerns, there is a

need for:

Describing the UI at any level of abstraction including its deployment on both

the functional core and the context of use;

And keeping trace of how the UI meets the initial requirements.

From a conceptual point of view, there is a consensus today that the UI’s design pro-

cess be structured around three levels of abstraction:

A domain-dependent specification in terms of Concepts and Tasks. A domain

concept is a concept that is relevant to users to accomplish tasks in a particular

domain (e.g., home, room, temperature). Concepts are classically modeled as

UML classes that are linked together by way of associations (e.g., home is made

of a set of rooms) (Figure 8.4). A task is a couple <Goal, Procedure> where the

Goal is the user’s objective and the procedure in the way to achieve the goal. The

procedure is a recursive decomposition of the task into subtasks that are related

by operators (e.g., enabling). A task may be decorated with unary operators

(e.g., optional, iterative). For instance, Managing temperature at home is a goal

that can iteratively be achieved by first selecting a room and then specifying the

desired temperature for this room. CTT (Paterno et al., 1997) is a widespread

notation for task modeling (Figure 8.4).

A structural specification organizing the UI into workspaces. A workspace is an

abstract structuring unit that supports a set of logically connected tasks. Clearly,

the rationale of the notion of Workspace comes from the Guidance/Grouping-

Distinction among items criterion: the idea is to group together (respectively

isolate) tasks and concepts that are logically connected (respectively not con-

nected). As pointed out in Bastien and Scapin’s framework, there are two means

for grouping/distinguishing items: position and format. At this level of ab-

straction, the leverage is the position. The format is about rendering. It comes

into play at the interactors level. A workspace may recursively be decomposed

into workspaces whose relations should express the semantics of tasks operators

(e.g., gives access to for the enabling operator) so as to be task compliant. Com-

patibility is one ergonomic criterion. In Figure 8.1a–c, there is one workspace

per task, thus supplying both of the criteria.

An interactor is the basic construct for concretizing UIs (e.g., window, panel,

group box, link, text field, button). In Figure 8.1a, four interactors are asso-

ciated with the task “Specify temperature”: the right panel for satisfying the

www.manaraa.com

MEGA-UI 181

Figure 8.4 A CTT task model and an UML domain model of the case study

Guidance-Grouping/Distinction among items by the position” criterion, the la-

bel “Set room temperature” for supporting the Guidance-Prompting, the input

field for the task per se, and the “Ok” button for explicitly validating the task.

This prevention satisfies the Explicit control criterion.

In the same way, from an implementational perspective, the code should be able to tell

the architecture style it is compliant with, as well as the implementation language it is

coded in. As this level of abstraction is not specific to HCI, we did not explore this

issue in depth.

Figure 8.5 makes explicit the three dimensions of self-description:

The vertical design process transforms requirements into an interactive system;

The horizontal mappings link together the different perspectives on the same

interactive system in a consistent way;

The transversal transformations support the switch to another interactive system.

This is typically the case when the current context of use is moving outside the

plasticity domain of the current interactive system, i.e., the current interactive

system is unable to cover this new context of use.

Behind Figure 8.5 is exactly the notion of megamodel as defined in MDE. Section 8.3

proposes an overview of the MDE core concepts that we have successfully transposed

to HCI and experienced in the HHCS case study.

www.manaraa.com

182 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 8.5 Self-description is three-fold. It covers the design rationale (i.e., the design

process transforming requirements into a resulting interactive system (IS)), the resulting IS

itself (i.e., a net of mappings linking together different perspectives in a consistent way),

and the evolution process for supporting the switch to another interactive system.

8.3 MODELING, METAMODELING, AND MEGAMODELING

MDE took its root in the OMG MDA. This set of standard is comprised of quite com-

plex technologies and acronyms (e.g., CWM, XMI, SPEM, PIM, CIM, HUTN, etc.).

Specification documents exist in many different versions and thousands of pages. This

complexity leads to specifications that are never fully implemented, and that some-

times do not have any tool implementation. As a result, major software editors such as

Microsoft, IBM or Borland are now developing their own MDE technologies. More

than eighty tools or prototypes are today referenced on planetmde.org. As a result, en-

tering this technological world is far from easy, especially since the various approaches

are based on several assumptions that very often remain implicit and sometimes con-

tradictory.

Fortunately, all MDE approaches share the core concepts of models, metamodels,

and transformations. But unfortunately, even the single word “model” can lead to con-

fusion and misunderstanding as at least four senses can be associated with this word

today (Favre, 2005). Adding “meta” levels and dealing with a mixture of abstraction,

jargon and technology issues lead to what is sometimes called the “meta-muddle”.

www.manaraa.com

MEGA-UI 183

Clarifying the fundamental concepts of MDE is necessary, especially since the ap-

proach is no more limited to MDA, but covers other technical spaces (Kurtev et al.,

2002) such as Grammarware, XMLware, etc. This section introduces the key concepts

of Systems, Models, Metamodels, Actors, Transformations and Megamodel that will

all be transposed to HCI in Section 8.4.

8.3.1 Systems (δ)

Systems denote elements of our universe of discourse. The term system conveys

the idea of some complexity: systems can be decomposed into subsystems (relation

noted (δ)).

Systems can be classified according to various properties. For instance, we can

make the distinction between static systems and dynamic systems. HHCS is obvi-

ously a dynamic system. Physicality is another example of property. We can make

the distinction between physical systems, digital systems (those that are manipulated

by computers), and mental systems (those that are manipulated by brains). Hybrid

systems are obtained when combining this physicality with the notion of subsystem

(those systems that combine subsystems from different categories).

Decomposition can be powerful in pointing out subtle issues when required. For

instance, a UI can be seen as a hybrid system if we consider it as a composition of

a software (a digital system), and some hardware (a physical system). The mental

representation a user may have of it is a mental system. As shown below, this kind of

combination is common when considering models as specific kinds of systems.

8.3.2 Models (μ)

The notion of “model” is not new in computer science. Recall for instance the use of

flowcharts in the early days of computer science. Nevertheless, the word still leads

to lively debates across communities, as well as inside the MDE community. This is

not surprising as the term “model” is polysemous and people forget to define it before

using it. The meanings of the word “model” can be gathered in four main groups, each

group corresponding to a different synonym of the word (Favre, 2005). For instance,

in the expression “relational model”, “model” stands for “language”, as one could also

say “relational language”. In the context of MDE, the current trend is to use the term

model as a synonym of “representation”. In that sense, a map of France may be a

model of this country: it is a representation of it. In the context of this chapter, we

adhere to the following definition (Bézivin, 2004):

“A model is a simplification of a system built with an intended goal in mind.

The model should be able to answer questions in place of the actual system”.

In other words, a model is a simplified representation of a given system, sometimes

called the “system under study.” It is of paramount importance to understand that

nothing is a model per se. A model is a role that a system may play with respect to

a given system (playing therefore the role of “system under study”). For instance,

both the map and the French territory are physical systems. But the map can serve

as a model to answer questions about the French territory. Models and systems under

study are linked by the relation “represented by” (relation noted μ).

www.manaraa.com

184 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

In contrast to a quite popular idea, it is very important to note that a model of a

model is not a metamodel. The concept of metamodel will be introduced in the next

section and is related to the notion of language. Models of models of models, etc., that

is μ chains are very common in practice. Let’s consider for instance a satellite image

(a digital system) of the French territory displayed on a computer screen (a physical

system) and helping the user in creating a mental model of the territory (mental sys-

tem). Here, all the systems play the role of model, except the territory which is at

the beginning of the μ chain. Models can be combined together (e.g., adding a model

about demography), leading to μ graphs. In fact, in contrast to metamodel graphs pre-

sented in the next section, dealing with μ graphs is not really difficult, even if these

graphs cross the boundaries of mental, physical, and digital worlds.

Note that HCI aims at synchronizing the digital world and the mental world through

the physical world, and that MDE concentrates on digital models, those that live in

computers. A sketchy concept diagram on a napkin will not be considered a “model”

in the MDE community, though its use could perfectly make sense in communication

processes among designers.

Here, there is a strong departure between MDE and the many traditional modeling

methods developed during the 1980’s and 1990’s in the context of SE. MDE aficiona-

dos love to distinguish contemplative models (those that are interpreted by humans),

from productive models (those that are interpreted by computers). Obviously, with the

strong focus on automation that characterized the first years of MDE, the emphasis

has so far been almost exclusively productive, with a strong emphasis on internal rep-

resentation and abstract syntax (leading for instance to XMI and other XML dialects

for model interchange between MDE tools).

However, there is no doubt that as long as human intervention is required in MDE

processes, models should as long as possible be understandable by both machine and

humans. We believe that Model Understandability could appear as the key for the

adoption of MDE techniques. In particular, given an abstract model, it should be pos-

sible to derive many (sub)models with maybe different concrete syntaxes, depending

on the skill of the human who is intended to understand or use the model. This point

is key, as we propose to give access to HCI models to both designers and end-users.

In other terms, the challenge is to provide designers and end-users tools to understand

μt links, and possibly to act on them to transform the system.

8.3.3 Metamodels(χ)

Whereas the notion of model has existed for ages, the notion of metamodel is new,
and the need of a systematic use no more discussed. Clearly, MDE should stand for
Metamodel Driven Engineering that would more accurately point out the novelty and
strength of the approach. There is quite an agreement today in the MDE community
around the following definition (Favre, 2004):

A metamodel is a model of a modeling language.

Basically, all models expressed in a given language must conform to the metamodel

of this language. There is a “conforms to” relationship (relation noted χ) between a

model and a metamodel. This χ relation should not be confused with the representa-

tion relation (μ), though it is based on it. A metamodel does not represent a particular

www.manaraa.com

MEGA-UI 185

model. It represents the syntactic and semantic conventions that are shared by all mod-

els in the language. In practice, a metamodel is therefore used to describe the language

on a whole, and to avoid misinterpretation of particular models at hand.

By definition, metamodels are particular kinds of models (as they represent lan-

guages).

Metamodels are therefore systems, and as a result can be classified according to

their physicality (physical, digital and mental). For instance, an English dictionary

or a grammar book are physical models of the English language: they represent dif-

ferent facets of it. While in theory all well-formed English sentences must conform

to English metamodels, in practice explicit metamodels are scarcely used in human

communication. Moreover, most of the available languages today (either natural or

artificial) have never been explicitly represented. Participants build their own mental

metamodel in a language acquisition process.

Many SE and HCI methods developed in recent decades were based on the assump-

tion that designers shared somehow a “reasonable understanding” of the language they

used. MDE breaks with this situation. All “(productive) models” should be linked with

an explicit metamodel in order to be interpretable by the machine.

8.3.4 The Pyramid of Models and the Pyramid of Actors

While combining μ links is conceptually not very difficult, this is not the case with

χ links (Favre, 2004). Fortunately, in most common situations, MDE artifacts can be

arranged in a pyramid-like structure driven by the conformance relation (χ) (left part

of Figure 8.6). This means that, whatever the level Ln is, each model at the Ln level

should conform to a model of the upper level Ln+1. In other words, metamodels (e.g.,

the UML metamodel or the metamodel of a task language) should themselves be writ-

ten in a well-defined (meta)language represented by a meta-metamodel. According to

OMG, the MOF standard should be used at the highest level to stop the ?-chain, the

MOF metamodel being described using itself. In fact, there is no agreement on the

number of levels, and the exact status of the bottom level of the pyramid (named M0

in the MDE jargon) is subject to various interpretations. This is particularly due to the

fact that the MDE standard fails to recognize that the notions of model and metamodel

are not absolute but relative.

In this chapter, we assume that the bottom level (named L+0) is the “execution

level” where the state of the application represents (μ) the situation the end-user is

dealing with in the real world.

This interpretation is favored by its high consistency with what we call the pyramid

of actors, a human centered view of MDE (see the right part of Figure 8.6). Whilst the

models pyramid is made of digital models, the outside of the pyramid is the real world

where humans live. We restrict the scope to computer-related activities: all the actors

are either computer end-users (L+0) or computer professionals.

The main benefit of the pyramid of actors is that it gives a global view of processes

that too often remain implicit. For instance, SE (L+2) is often confused with applica-

tion development (L+1), while Human Computer Interaction is often restricted to the

use of applications by end-users (L+0).

www.manaraa.com

186 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 8.6 The pyramid of models and the pyramid of actors

The pyramid of models and the pyramid of actors are obviously connected. At a

given level Ln+1, actors are dealing with the corresponding kind of models. These

models are intended to fashion tools to the user of the level below. On the other

hand, each actor is constrained by the (meta)models designed by the actors of the

level above, leading to the conformance relation (χ). At each level, actors interact

with computers to do their job. As suggested by the pyramid morphology, the more

the level is high, the less the users are numerous, but the more skills in computer

science are required.

To better understand the pyramid, let us review the levels starting from the bottom.

L+0. End-user’s level. At this level (often called “execution level”), the end-

user is controlling a software application through a “regular” UI. For instance,

the owner of a house uses HHCS to control his/her comfort at home. The state

of HHCS plays the role of model with regard to the house. In an either proac-

tive or reactive manner, the application controls that the end-user’s behavior is

compliant with the interaction language defined at the level above, same thing

stands for the system state. With respect to the shape of the actor pyramid, let us

point out that the number of users could there range from thousands to millions,

and that no special skill in computer science is there required.

L+1. Application developer’s level. This level corresponds to the application

development level. Here, the number of actors is typically one order of magni-

tude lower than at the level below, the size of medium to large teams ranging

from ten to hundred of developers. In fact, what is even more important is the

diversity of skills that are necessary to develop interactive systems. MDE is

all about separation of concerns and many different languages are involved in

the development of modern software applications. For instance, in an MDE

based approach, UI designers produce task models, workspace models, interac-

tor models, etc. Software engineers may use other kinds of models to describe

database structures, component behaviors, etc. Because of the “productive” fea-

ture of models, tooling is of great importance. For each kind of model, a corre-

sponding toolset including model editors, conformance checkers, transformers,

www.manaraa.com

MEGA-UI 187

etc., is needed. Model editors may have complex UIs, and are software too.

This leads to the upper level, which usually remains implicit in HCI, modeling

tools being developed in a quite ad-hoc way so far.

L+2. Tool builder’s level. Tooling has probably been the worst enemy of model-

based approaches in HCI. Without tools of good quality, it is difficult to transfer

concepts to industry, and as a result apply them in real case studies. While in

SE there is some agreement around UML as standard, we are quite far from

a unified (set of) modeling language(s) for HCI. But, would general purpose

languages fit the real needs? Domain Specific Languages (DSL) would proba-

bly be the best suited for tackling specific problems. For instance, a company

specialized in games on cell-phones would undoubtedly appreciate modeling

languages and tools specifically suited to its business. Today some DSL exist

(e.g., for Web applications). In fact, building an SE environment for HCI is

much more a SE than HCI issue. The specificity of MDE approach is to address

this problem explicitly thanks to the notion of productive metamodels at the L+2

level. Whereas tools like TERESA (Mori et al., 2004) were built in an ad-hoc

manner, the promise of MDE is to derive tools such as editors and conformance

checkers from metamodels, providing standard means for tools interoperability

as well. Tool building and interoperability have not been addressed by previous

model-based approach in HCI, and this is why we believe “metamodel-driven

engineering” would be a better name for this novel approach. Note that, in a

large company, there may be ten to hundred application developers (actors at

L+1), but only a few of them in charge of building modeling tools for them

(actors at L+2). In any case this should be interpreted as being of a less impor-

tance for the company. It is the otehr way around: metamodels capitalize the

know-how of the company. In the long term, this knowledge might be far more

important than the one put in individual applications. Dealing with metamodels

and building tools require special skills in so-called “language engineering.” If a

particular DSL is to be instrumented, then high skills in this specific domain are

highly required. At this L+2 level, actors produce modeling tools for the level

below, and in order to do so they use meta tools or frameworks provided by the

level above (L+3). For instance, they could use the EMF or GMF interfaces to

generate model editors.

L+3. Meta tool builder’s level. This is the highest level as defined in MDA. It

is the level of meta-metamodels. Only a few teams over the world tackle this

level, since for interoperability purposes this level is assumed to be quite stable

and under the control of standardization bodies. OMG advocates for the MOF

standard, but revisiting this level is a matter of research. In practice, Microsoft

and IBM propose their own meta-metamodels and corresponding toolsets EMF

and GMF.

The core benefit of the actors pyramid is to make explicit levels that classically

remain implicit though existing in the real world. Understanding these levels and

instrumenting them as proposed by the MDE approach could lead to significant im-

www.manaraa.com

188 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

provements. Conceptually, the regularity of the structure is quite striking, and some

phenomenon apparently disconnected could be better explained with this framework.

For instance, while the L+0 level is often called the “execution” level, in reality

some software is executed at each level. In some cases, actors want to cross the level

boundaries leading to co-executions. For instance, an actor at the level Ln may want

to validate his model by executing a prototype at the level Ln-1. In this case, he plays

the role of user with regard to the tool he is building. When transposing to HCI at the

L+1 level for instance, this corresponds to the “test mode” of GUI builder tools where

the designers play the role of end-users (L-1 level). Note that in this case, there is

logically no problem as actors have enough skills to deal with the lowest levels. But

this is not true on the other side.

An actor at the Ln level may want to adapt the software he/she is using to better fit

to a particular context. To that end, he/she may need to get access to the models of the

higher level (Ln+1) and change some design choices. For instance, if we consider the

L+0 level, an end-user may want to tune the workspace model and for that execute a

workspace model editor. Obviously depending on the model, this raises a challenge in

model understanding because the skills required are increasing when going to higher

levels. In such a scenario, one could imagine providing simplified models to actors

that want to get to higher levels without the burden of dealing with separated tools and

skills.

Note that such scenarios may occur at any level of the pyramid, not only at the

bottom level. For instance, at the L+1 level, many UML editors allow application

developers to define their own stereotypes such as <<Concept>> or <<Task>>.

By doing so, they give them access to the upper level. It is an ad-hoc “end-user” way

to define a new language as UML extension. A much better approach is to let actors

at higher level define the languages that should be used in the company and configure

the UML environment through a tool usually called “profile builder” tool.

8.3.5 Transformations (τ)

Roughly speaking, a transformation is the production of a set of target models from a

set of source models, according to a transformation definition. A transformation def-

inition is modeled as a set of transformation rules that together describe how source

models are transformed into target models (Mens et al., 2004). Source and target

models are related by the τ relation “is transformed into.” Note that a set of transfor-

mation rules is a model (a transformation model) that complies with a transformation

metamodel. This metamodel represents a transformation language such as QVT, the

standard from OMG. Obviously, transformation engines are required to execute model

transformation.

τ expresses an overall dependency between source and target models. However, ex-

perience shows that a finer grain of correspondence needs to be expressed. Typically,

the incremental modification of one source element should be easily propagated into

the corresponding target element(s) and vice versa. While τ links relate two models

considered as a whole, mappings give the details on how elements of the source and

target models relate to each other. For example, in HCI, rendering is a transformation

where tasks are mapped into workspaces which, in turn, are mapped into windows

www.manaraa.com

MEGA-UI 189

populated with widgets in case of graphical UIs. Section 8.4 claims for maintain-

ing as mappings the correspondence between the source task (decorated with domain

concepts) and its target workspace(s) and widgets.

Transformations can be characterized within a four-dimension space: The trans-

formation may be automated (it can be performed by a computer autonomously), it

may be semi-automated (requiring some human intervention), or it may be manually

performed by a human. For example, given our current level of knowledge, the trans-

formation of a “value-centered model” (Cockton, 2005) into a “usability model” can

only be performed manually. On the other hand, UI generators such as CTTE (Mori

et al., 2002) produce UIs automatically from a task model. A transformation is vertical

when the source and target models reside at different levels of abstraction (e.g., tasks

and workspaces). Traditional UI generation is a vertical top-down transformation from

high-level descriptions (such as a task model) to code generation. Reverse engineering

is also a vertical transformation but it proceeds bottom up, typically from executable

code to some high-level representation by the way of abstraction. A transformation is

horizontal when the source and target models reside at the same level of abstraction.

For example, translating a Java source code into C code preserves the original level of

abstraction (i.e., Program).

8.3.6 Megamodels

Megamodels aim at providing structures to avoid the meta-muddle. A megamodel

is “a model which elements represent models, metamodels and other global entities”

(Bézivin, 2004). While Modeling-in-the-small is the activity that considers the details

of models (i.e., model elements),

Modeling-in-the-large, so-called Megamodeling, considers the global relationships

between the MDE artifacts, without considering their content. As discussed above,

MDE processes involve complex structures of models, metamodels, transformations

but also artifacts such as interpreters, transformation models, transformation engines,

models editors, and so on. Thus, to be useful, a model needs a metamodel of course,

but also transformations that operate on it, plus tooling including transformation en-

gines to interpret the transformation models, interpreters to interpret the language in

which the transformation engines are written, and so on. A megamodel is a model

that represents this kind of complex structure. It is a graph whose nodes are systems

(as defined in Section 8.3.1), and edges are for instance μ χ or τ links (note that only

the most fundamental relations have been introduced in this chapter for the sake of

simplicity). An example of megamodel is provided in Figure 8.7. It links together the

core concepts of MDE using the basic relations ε, μ, and χ.

In practice, it is quite temping to confuse the notion of metamodel and megamodel.

But, really, these two concepts have different purposes. Metamodels aim at describing

modeling languages (the prefix meta means “beyond” or “after” just like in metalan-

guage). In contrast, a megamodel aims at modeling how large sets of MDE artifacts

(in particular including metamodels) are connected together (the mega prefix means

big or large). Note that since a megamodel is still a model, all the Section 8.3 applies

to the notion of megamodel, but let’s keep it simple! A few basic observations are,

however, of particular relevance here.

www.manaraa.com

190 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 8.7 An example of megamodel charting the basic concepts and relations in MDE

First, it is important to distinguish contemplative megamodels from productive

megamodels, even if both of them present some interests on their own. Contemplative

megamodels are powerful communication aids when explaining and reasoning about

complex MDE situations. In such a megamodel, μ can safely point to systems that

are not in the digital world expressing for instance that a digital model represents the

earth. Connections with real-world and non digital entities are impossible in produc-

tive megamodels since they are interpreted by the machine and live in the digital world

only. Productive megamodels are digital structures that relate together digital artifacts

that otherwise would be disconnected.

Second, megamodels can be used to manage MDE structures at various levels. For

instance, at the global level, contemplative megamodels could be used to describe how

MDE standards relate to each other. At the level of a company, productive megamod-

els can be used to describe the structure of the MDE repository where all artifacts

produced by the company are stored. In this case, all metamodels, transformations,

model editors are registered for further reuse. There the purpose of megamodeling

is to define the structure of such repository. At the level of a software application,

only the MDE artifacts required by this application will be present in the megamodel

of this application, unless we want to keep the link between the application and the

repository, for instance in order to support adaptation.

The next section transposes these MDE core concepts and relations to HCI for the

engineering of plastic UIs.

8.4 MDE FOR PLASTICITY

This section bridges the gap between MDE and HCI for the engineering of plastic UIs.

It first transposes the notion of megamodel to HCI, thus providing the global picture

of the approach. Then, it focuses on the cornerstone, the notion of mapping, that in

www.manaraa.com

MEGA-UI 191

Figure 8.8 The megamodel coverage

HCI supports the key challenge of usability. It proposes a mapping metamodel that

covers both design and adaptation transformations. Finally, it raises the issue of the

understandability of the megamodel via the novel notion of Mega-UI.

8.4.1 Megamodel in HCI

When integrating the MDE core notions of Metamodel and Mapping in Figure 8.5, we

obtain Figure 8.8. So far, we have put our effort in the UI’s (Concept, Task, Workspace

and Interactor) modeling (M1) and metamodeling (M2) for the resulting interactive

system.

Our purpose is not to define new meta-models, but to show how a systematic com-

pliance with metamodels (even for mappings) is key for plasticity. What ever the

perspective on a UI is (e.g., task, concept, workspace, interactor), it has to be compli-

ant with an explicit metamodel so that any actor (machine and/or human) can reason

about it. Figure 8.9 shows a subset of the HHCS graph of models corresponding to Fig-

ure 8.1a. The deployment on the functional core and the context of use is not depicted.

Only a few mappings are mentioned: those that link together tasks and concepts, tasks

and workspaces, and so on. Here, we use UML as meta-metamodel (M3-level model).

www.manaraa.com

Figure 8.9 An excerpt of the megamodel for HCI. The coverage is limited to UI. Neither

the functional core nor the context of use are considered

192 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

www.manaraa.com

MEGA-UI 193

Figure 8.10 A mapping metamodel for general purpose. The composition between Map-

ping and Metamodel is due to EMF (Eclipse Modeling Framework)

Keeping such a graph alive at runtime is a means for sustaining plasticity as map-

pings convey the design rationale of the UI in terms of the usability properties they

have been driven by. The next section is about mappings.

8.4.2 Mapping Metamodel for Plasticity

The mapping metamodel provided in Figure 8.10 is a general purpose mapping meta-

model. The core entity is the Mapping class. A mapping links together entities that are

compliant to Metamodels (e.g., Task and Interactor). A mapping makes explicit the

corresponding Transformation functions. The transformation model can be done by

patterns (e.g., to the task pattern Select a room, apply the pattern: one hypertext link

per room, the name of the link being the name of the room). A Pattern is a transforma-

tion model that links together source and target elements (ModelElement) to provide

a predictive description of the transformation function. Patterns are powerful for en-

suring UI’s homogeneity-consistency, which is one ergonomic criterion (Bastien and

Scapin, 1991). In addition, a mapping may describe the execution trace of the transfor-

mation function. The trace is a set of Links between Instances of ModelElements (e.g.,

the hypertext link Kitchen and the task Select a room when applied to the concept of

kitchen).

A mapping conveys a set of Properties (e.g., “Guidance-Prompting”). A property

is described according to a given reference framework (Referential) (e.g., Bastien and

Scapin, 1991). Whatever the framework is, the properties are descriptive. They qualify

either the global set of mappings or one specific element: a mapping, a pattern or a

link.

www.manaraa.com

194 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 8.11 Examples of mappings in HHCS. Mappings tell the usability properties they

satisfy. Here properties are expressed in Bastien-Scapin’s framework

Associated transformations (see the UML and associated transformations associa-

tion between the classes Mapping and TransformationFunction in Figure 8.10) are in

charge of maintaining the consistency of the graph of models by propagating modifi-

cations that have an impact on other elements. For instance, if replacing an interactor

with another one decreases the UI’s homogeneity-consistency, then the same substitu-

tion should be applied to the other interactors of the same type. This is the job of the

associated functions, which perform this adaptation locally.

Figure 8.10 exemplifies mappings on the specific case of Figure 8.1c. Further ex-

amples can be found in Scottet et al. (2007)(Sottet et al., 2007).

Note that the mapping metamodel is general. The HCI specificity comes from the

nature of both the metamodels (Metamodel) and the framework (Referential). Cur-

rently in HCI, effort is placed on metamodeling (see www.usixml.org for instance)

but the mapping metamodel is still under explored. Beyond the definition of usabil-

ity criteria, we need metrics. Metrics make it possible for the system to self-evaluate

when the context of use changes, and trigger the most appropriate adaptation rule (Sot-

tet et al., 2007). The fitness of the rule depends on the context of use of course, but

also of the quality the rule is able to guarantee. Adaptation may be performed under

the control of the end-user. The next section is about the UI of the megamodel.

8.4.3 Mega-UI

The scope of a UI is defined by the user’s task it is intended to support. The other

tasks (i.e., the tasks that do not belong to the task model) are not part of the UI: we

call them Extra-tasks. It is typically the case of tasks that support the observation

www.manaraa.com

MEGA-UI 195

Figure 8.12 Extra-UIs for observing and controlling the tasks distribution on platforms

and redistribution of UIs when these have not been incorporated in the task model.

We call Extra-UIs UIs in charge of Extra-tasks. A running example is provided in

Figure 8.12a. By simply selecting a task in the task model (right part of the window),

the user (yet the designer) controls the platforms on which he/she would like to get the

task (only on the HTML PDA in Figure 8.12a). Such UIs were previously called Meta-

UI (Sottet et al., 2007) based on Coutaz (2006). But, as Meta has there no ? semantics

(but a ? one!), we prefer the prefix Extra to point out it is outside the pure (Intra)-UI

even if Extra- and Intra-UIs might be merged together (Coutaz, 2006). Depending on

the user’s skills, different Extra-UIs have to be explored. A hand-made mock-up has

been sketched in Figure 8.12b for users not familiar with task models.

Unlike Extra-UIs that lie on μ links, Meta-UIs browse χ links. Figure 8.13 com-

bines Extra- and Meta-UIs to force the distinction: the Meta-UI (Figure 8.13c) comes

into play for giving access to the task metamodel. In summary, when the purpose is

just to represent (mu) models (e.g., the task model in Figure 8.13a), then the UI is an

Extra-UI. When links are crossed over, the UI is a Meta-UI.

In reality, Intra-, Extra- and Meta-UIs are parts of the Mega-UI, i.e., the UI of the

Megamodel.

www.manaraa.com

196 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 8.13 Extra- and Meta-UIs

Intra- and Extra-UIs are in charge of μ links, Meta-UIs of χ links. Figure 8.14

sketches a Mega-UI centered around the notion of ecosystem, i.e., the interactive sys-

tem when deployed in its context of use. In (a), the user has access to an Extra-UI.

This Extra-UI (b) makes the ecosystem observable (left part of the window). The cur-

rent UI (right part) is the Interactors perspective on the ecosystem. By clicking on an

interactor, the user triggers the display of a menu giving him/her access to the corre-

sponding metamodel (Interactor) but also to the other perspectives (Concept, Task,

etc.)

8.5 CONCLUSION AND PERSPECTIVES

Initially tackling the problem of plasticity, we finally have the feeling of having con-

tributed to HCI in general. It seems to us that, pushed by plasticity that called for

making explicit things (the context of use, the quality, the rationale of transforma-

tions, and languages), we have dug deeper and deeper, until understanding the way

UIs were really engineered. Now, we are at the point where there are Many Faces of

UIs (have in mind the CHI’06 workshop on The Many Faces of Consistency (Sottet

et al., 2006)). Traditional UIs are in fact a curtailed view of the Mega-UI: the one that

www.manaraa.com

MEGA-UI 197

Figure 8.14 Beyond UIs: Mega-UIs

corresponds to the Interactors of the Intra-UI. We now have to explore the added value

of UIs for the other perspectives, levels, and actors. It is as if we had opened the door

and discovered new horizons.

The trouble could come from the complexity of the Mega-stuff. We already antic-

ipate funny challenges such as: What about Mega-UIs for Mini-devices? It is clear

that we need to cope with real applications. Nevertheless, whatever the conclusions

will be, the better understanding and formalization we earn is a key result both for

research and for teaching. Note that teaching MDE using HCI as field study seems to

be pedagogically promising.

Finally, let us go back to Weiser’s vision (Weiser, 1991) of calm technology. We

are very far from it when considering the HCI researcher in charge of Mega-UIs.

Acknowledgements

This work has been supported by the network of excellence SIMILAR and the ITEA

EMODE project. The authors warmly thank Xavier Alvaro for the implementation of

the HHCS prototype.

References

Abowd, G., Coutaz, J., and Nigay, L. (1992). Structuring the space of interactive

system properties. In Larson, J. and Unger, C., editors, Engineering for Human-
Computer Interaction. Amsterdam: North-Holland. IFIP.

Balme, L., Demeure, A., Barralon, N., Coutaz, J., and Calvary, G. (2004).

CAMELEON-RT: A software architecture reference model for distributed, migrat-

able, and plastic user interfaces. In Markopoulos, P., et al. editors, Lecture Notes in

www.manaraa.com

198 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Computer Science, pages 291–302. Berlin: Springer-Verlag, Ambient Intelligence:

Second European Symposium, EUSAI. ISBN: 3-540-23721-6.

Bastien, C. and Scapin, L.D. (1991). A validation of ergonomic criteria for the evalu-

ation of user interfaces. ACM SIGCHI Bulletin, 23(4):54–55.

Bézivin, J. (2004). On the need for megamodels. In Proceedings of the Best Practices
for Model-Driven Software Development, Workshop, held with OOPSLA.

Calvary, G., Coutaz, J., Dâassi, O., Balme, L., and Demeure, A. (2004). Towards a new

generation of widgets for supporting software plasticity: the “comet”. In Bastide,

R., Palanque, P., and Roth, J., editors, EHCI-DSVIS’2004, The 9th IFIP Working
Conference on Engineering for Human-Computer Interaction Jointly with The 11th
International Workshop on Design, Specification and Verification of Interactive
Systems, Lecture Notes in Computer Science 3425, pages 306–323. Springer.

Card, S. K., Moran, T. P., and Newell, A. (1983). The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q. Bouillon, L., and Vanderdonckt,

J. (2003). A Unifying Reference Framework for multi-target user interfaces, Inter-
acting with Computers, 15(3), pages 289–308.

Cockton, G. (2005). A development framework for value-centered design. In Proceed-
ings of ACM CHI’05: CHI’05 on Human Factors in Computing Systems (Extended
Abstracts), pages 1292–1295, ACM Press.

Constantine, L. L. and Lockwood, L. A. D. (1999). Software for Use: A Practi-
cal Guide to the Models and Methods of Usage-Centered Design. Reading, MA:

Addison-Wesley.

Coutaz, J. (2006). Meta-user interfaces for ambient spaces. In Interational Workshop
on Task Model and Diagram (TAMODIA’06).

Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., and Young, R. M. (1995).

Four easy pieces for assessing the usability of multimodal interaction: the CARE

properties. In Nordby, K., Helmersen, P. H., Gilmore, D. J., and Arnesen, S. A.,

editors, Human-Computer Interaction, INTERACT ’95, IFIP TC13 International
Conference on Human-Computer Interaction, 27-29 June 1995, Lillehammer, Nor-
way, IFIP Conference Proceedings, pages 115–120. Chapman & Hall.

Denis, C. and Karsenty, L. (2004). Inter-usability of multidevice systems—a concep-

tual framework. In Seffah, A. and Javahery, H., editors, Multiple User Interfaces:
Cross-platform Applications and Context-Aware Interfaces, pages 373–385. New

York: Wiley.

Dix, A., Findlay, J., Abowd, G., and Beale, R. (1993). Human Computer Interaction.

New York: Prentice Hall.

Elwert, T. and Schlungbaum, E. (1995). Modeling and generation of graphical user

interfaces in the TADEUS approach. In Palanque, P. A. and Bastide, R., editors,

Design, Specification and Verification of Interactive Systems ’95, Proceedings of
the Eurographics Workshop in Toulouse, France June 7-9, 1995, pages 193–208.

Springer.

Favre, J. (2004). Towards a basic theory to model model driven engineering. In Work-
shop on Software Model Engineering, WISME 2004, joint event with UML2004.

www.manaraa.com

MEGA-UI 199

Favre, J. (2005). Megamodeling and etymology—a story of words: From MED to

MDE via MODEL in five milleniums. Technical report, appeared in DROPS 05161,

ISSN 1862-4405, published by IBFI, Dagstuhl Seminar 05161 on Transformation

Techniques in Software Engineering, Dagstuhl, Germany. 22 pages.

Grolaux, D., Van Roy, P., and Vanderdonckt, J. (2004). Migratable user interfaces:

Beyond migratory interfaces. In Proc. of Mobiquitous 2004 The First Annual Inter-
national Conference on Mobile and Ubiquitous Systems Networking and Services.

Grolaux, D., Vanderdonckt, J., and Roy, P. V. (2005). Attach me, detach me, assemble

me like you work. In Costabile, M. F. and Paternò, F., editors, Human-Computer
Interaction—INTERACT 2005, IFIP TC13 International Conference, Rome, Italy,
September 12-16, 2005, Proceedings, volume 3585 of Lecture Notes in Computer
Science, pages 198–212. Springer.

IFIP (1996). Design Principles for Interactive Systems. London: Chapman and Hall.

Johnson, P., Wilson, S., Markopoulos, P., and Pycock, J. (1993). ADEPT—advanced

design environment for prototyping with task models. In ACM Annual Conference
on Human Factors in Computing Systems, pages 56–57.

Kurtev, I., Bézivin, J., and Aksit, M. (2002). Technological spaces: An initial appraisal.

In Proceedings of the Confederated International CoopIS, DOA, and ODBASE
2002, Industrial track.

Lonczewski, F. and Schreiber, S. (1996). The FUSE-system: an integrated user inter-

face design environment. In Vanderdonckt, J., editor, Computer-Aided Design of
User Interfaces I (CADUI), Proceedings of the Second International Workshop on
Computer-Aided Design of User Interfaces, June 5-7, 1996, Namur, Belgium, pages

37–56. Presses Universitaires de Namur.

Luo, P., Szekely, P., and Neches, R. (1993). Management of interface design in HU-

MANOID. In INTERCHI’93, Amsterdam.

M‘̀artin, C. (1996). Software lifecycle automation for interactive applications: The

AME design environment. In Vanderdonckt, J., editor, CADUI, pages 57–76.

Presses Universitaires de Namur.

Mens, T., Czarnecki, K., and Gorp, P. V. (2004). 04101 discussion—A taxonomy of

model transformations. In Bézivin, J. and Heckel, R., editors, Language Engineer-
ing for Model-Driven Software Development, volume 04101 of Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum f‘̀ur Informatik

(IBFI), Schloss Dagstuhl, Germany.

Mori, G., Paternò, F., and Santoro, C. (2002). CTTE: support for developing and

analyzing task models for interactive system design. IEEE Trans. Softw. Eng.,
28(8):797–813.

Mori, G., Paternò, F., and Santoro, C. (2004). Design and development of multidevice

user interfaces through multiple logical descriptions. IEEE Trans. Software Eng,

30(8):507–520.

Myers, B. A., Hudson, S. E., and Pausch, R. F. (2000). Past, present, and future of user

interface software tools. ACM Trans. Comput.-Hum. Interact, 7(1):3–28.

Nielsen, J. (1994). Heuristic evaluation. In Nielsen, J. and Mack, R. L., editors, Us-
ability Inspection Methods. New York: Wiley.

www.manaraa.com

200 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Paterno, F., Mancini, C., and Meniconi, S. (1997). Concurtasktrees: a diagram-

matic notation for specifying task models. In Proceedings of IFIP INTERACT’97:
Human-Computer Interaction, pages 362–369.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., and Carey, T. (1994).

Human-Computer Interaction. Reading, MA: Addison-Wesley.

Seffah, A., Donyaee, M., and Kline, R. B. (2006). Usability measurements and met-

rics: A consolidated model. Software Quality Journal, 14(2): 159–178.

Shackel, B. (1991). Usability-context, framework, design and evaluation. In Human
Factors for Informatics Usability, pages 21–38. Cambridge University Press.

Shneiderman, B. (1997). Designing the User Interface: Strategies for Effective
Human-Computer Interaction (3rd. ed.). Addison-Wesley, Reading: MA.

Sottet, J., Calvary, G., Coutaz, J., and Favre, J. (2007). A model-driven engineering

approach for the usability of plastic user interfaces. In Engineering Interactive Sys-
tems 2007 joining Three Working Conferences : IFIP WG2.7/13.4 10th Conference
on Engineering Human Computer Interaction, IFIP WG 13.2 1st Conference on
Human Centered Software Engineering, DSVIS - 14th Conference on Design Spec-
ification and Verification of Interactive Systems, University of Salamanca.

Sottet, J., Calvary, G., Favre, J., Coutaz, J., and Demeure, A. (2006). Towards map-

pings and model transformations for consistency of plastic user interfaces. In

Richter, K., Nichols, J., Gajos, K., and Seffah, A., editors, The Many Faces of
Consistency 2006. Proc. Workshop held at ACM Conference on Human Factors
in Computing Systems (CHI2006).

Thevenin, D. (1999). Plasticity of user interfaces: Framework and research agenda. In

Sasse, A. and Johnson, C., editors, Interact’99, pages 110–117. IFIP IOS Press.

Trevisan, D., Vanderdonckt, J., and Macq, B. (2003). Continuity as a usability prop-

erty. In Proceedings of the Tenth International Conference on Human-Computer
Interaction, volume 1 of Human Factors and Ergonomics, pages 1268–1272.

Van Welie, M., van der Veer, G., and Eliëns, A. (1999). Usability properties in dialog

models. In 6th International Eurographics Workshop on Design Specification and
Verification of Interactive Systems DSV-IS’99, pages 238–253.

Weiser, M. (1991). The computer for the 21st century. Scientific American,

265(3):1613–1619.

www.manaraa.com

9 CAUSE AND EFFECT IN USER

INTERFACE DEVELOPMENT
Ebba Thora Hvannberg

University of Iceland, Hjardarhaga 2-6, Reykjav́ık, 107 Iceland

Abstract. There is a lack of means of translating work products of elicitation to design

and using results of evaluation as feedback to design. This paper lays the foundation of

a model of evaluation to be built concurrently with the design activity. The evaluation

model describes the implications which work models have on design and records the

cause/effect relationship between design and the problem domain. The paper presents

two case studies from air traffic control that are meant to motivate the need for such

an evaluation model and serve as input to its design.

9.1 INTRODUCTION

A prerequisite to design is the wish to change the problem domain by using new tech-

nology for improvement. In other words, we foresee an intervention that will change

the problem domain. The difficult challenge in design is hence not merely on char-

acterising the current domain, but to try to predict how the domain will change with

new interventions and to foresee the altered behavior under varying conditions. This

is what makes the science of the artificial different from the sciences of the natural.

Whereas, in the former case, the emphasis is on how to make artifacts with desired

properties and how to design artifacts that adapt well to its environment or vice versa,

in the latter case, the task is to learn about how natural things are and how they work

(Simon, 1996). Much effort is still beinn spent on learning how to understand charac-

teristics of contexts (Beyer and Holtzblatt, 1998) and domains. Domain engineering

201

www.manaraa.com

202 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

is characterised as the study of domains for the purpose of reuse and is distinguishable

from the machine being built or the application engineering (Björner, 2006).

Design has many facades, and designers employ numerous strategies, both im-

plicitly and explicitly. Much of design comes from experience and if a designer has

successfully designed a solution to a problem and it has worked well, it can be used

on the next similar problem. Designers reuse or adapt previous designs, not neces-

sarily whole designs but frameworks or patterns of designs. Empirical research has

been conducted on designs in order to show that they work, with the aim of extracting

new strategies. An obstacle in the development of user interfaces has been the lack of

means of translating desired properties, coming either from elicitation or evaluation, to

design ideas. These ideas are generated from insight or inspiration of the authors and

alternatives are searched for the most desirable solution (Simon, 1996). In past years,

creativity has been a growing field that includes techniques such as brainstorming,

mind mapping and lateral thinking. In some of these methods, emphasis is on learn-

ing about associations between phenomena, collaborating with others in the team and

disseminating the design for peer review (Shneiderman, 2002). Instead of focusing on

the design solution, another strategy is to relax assumptions and trade-off conflicting

constraints that cannot be resolved, and thereby refine the design problem (Hoffman,

Roesler, and Moon, 2004).

During evaluation, we need to predict how an intervening design changes the prob-

lem domain. We can try several alternatives, accept some, develop others further, or

reject them. If a design for a feature needs further development, it can be difficult to

decide how it should be changed. We need to go back to the drawing board to create

still new design ideas. Revisions need to take place that modify the implementation,

the solution, or one’s comprehension (Gray and Anderson, 1987) as referred to in

Hoffman et al. (2004).

The three activities which have been discussed above, learning about the domain,

design and evaluation, are main components in user interface development, but are

divided into four activities in a lifecycle of user centered user interface development.

More specifically they are eliciting user needs and their environment, specifying the

user and organizational requirements, producing design solutions followed by evalu-

ation, usually in several iterative cycles in an interdisciplinary team (ISO/IEC, 1999).

These four activities have input and output work products. The input is the basis for

the activity and the output is its deliverable and usually input into a successor activity

in the lifecycle. The output of elicitation can be user, task or work models of various

types, and description of actors and their environment, i.e., a context. The output of

the design activity is one or several design ideas for a feature, realized in low- to high-

fidelity prototypes, a model, or a final system. The output of the evaluation activity

can be failures detected, observed constraints, facilitators, new or modified goals, pos-

itive or negative consequences of a designed feature. How information flows between

these four activities is not as well known and we conjecture that this may contribute

to the lack of interplay between evaluation and design. We propose that an evaluation

model, which captures better the relationship between cause and effects, can miti-

gate this deficiency. In the evaluation model we recognise the interplay between all

three activities, problem domain analysis, design and evaluation, but as pointed out by

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 203

Cockton (2006) the interplay between contextual research and design is critical, and

an evaluation of problem domain analysis is as important as evaluation of end prod-

ucts (Hoegh, et al., 2006). Before proceeding further, we cover more deeply causes,

effects, and current evaluation models.

Figure 9.1 Cause in Design and Effect in Problem Domain

9.1.1 Causes and Effects

Two activities are prevalent in design and its revisions. When the designer is evaluating

designs, he or she is continuously trying to (i) predict effects of designs in future

changing environments, even several years ahead, and (ii) finding causes of problems
of implemented designs when they have been incorporated into their environment (see

Figure 9.1). The former concerns the actual design activity, and naturally, we want

to be able to make accurate predictions to minimize problems in the implemented

designs.

The discussion on the relationship between cause and effect is an ancient subject

of philosophy (Hume, 1978–1982), but recent examples can be related to informa-

tion technology. Pearl (Pearl, 2000) has investigated the importance of researching

causes of effects and has presented a diagrammatical notation to enable researchers

to exchange descriptions about causality. He has argued that statisticians have been

www.manaraa.com

204 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

too reluctant in investigating causality because of hesitation of relating causality with

correlation.

In the field of human computer interaction Galliers, Sutcliffe, and Minocha (1999)

have suggested that Bayesian modeling can be used to describe the relationship of

users’ mistakes and slips (the effects) that can be attributed to miscellaneous outer

and inner variables (causes). Examples of outer variables are time pressures, motiva-

tion, environmental conditions, or examples of inner variables are cognitive abilities,

physical complexity and user interface, or usability problems discovered through ob-

servation of the user. Notably, user interfaces do not seem to play a large effect.

Fenton, Krause, and Neil (2002) discuss the difficulty of establishing causal models

purely from statistical data in general, including in software engineering. Researchers

have e.g., tried to establish regression models between internal, external quality and

quality in use but it has been difficult because of possible confounding variables. Also,

regression models do not adapt well to change in context. Causal models expressed

with graphical probabilistic models are able to capture the meaning of change and

problem domains with a rich causal structure such as software engineering or human-

computer interaction design.

Recognizing that random experiments may be resource demanding and not rel-

evant for heavily contextual evaluation, user interface design has adopted methods

from ethnography. Maxwell (2004) has criticised an oversimplification many make of

qualitative research, stating that causal explanation needs to be stressed more than is

currently practiced. Maxwell further claims that when understanding causality, quan-

titative methods can be used in three conditions. There should be a well-developed

theory that allows the interpretation of the experimental results. The causal process

needs to be controllable, simple and relatively free from contextual, e.g., temporal,

variability. Finally, the situation should not be conducive to direct investigation of

causal processes. This is especially the case for requirements elicitation, but perhaps

to a lesser degree in evaluation. Qualitative research methods have not been stan-

dardized or refined, perhaps because researchers are encouraged to go their own way

(Taylor and Bogdan, 1998). This may explain why they are less easily adoptable and

require more expertise. User interface designers and evaluators can still learn from

qualitative research methods.

There are several tools to derive propositions about causality and implications in

qualitative methods. The aim is to look at variables that emerge from codification of

the qualitative data and understand the association between them. We seek to under-

stand whether one predicts or precedes another, how one variable impacts another,

whether two comprise one, whether one generalizes another, etc. We look for con-

trasts and contradictions. Causal networks (Miles and Huberman, 1994, p. 222) are

examples of a tool that describe relationship between phenomena,.

To find causes of problems (e.g., undesirable effects) at the time of evaluation, it is

necessary to try to understand and describe the design features and their intended ef-

fect at design time. A prerequisite is to investigate thoroughly the implications a work

model is meant to have on design (see Figure 9.1). The causes may be miscellaneous

and even multiple; they can be within design features or the underlying work model.

In software development, finding root causes has been widely used and various suc-

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 205

cessful efforts have been reported on how to analyze defects, including an Ishikawa

or fishbone diagram (Grady, 1992). The CUP (Classification of Usability Problems)

(Hvannberg and Law, 2003) method has been suggested to further classify attributes

of failures in user interaction and to find their roots in processes of the lifecycle of user

interface development.

9.1.2 Evaluation Models

Various frameworks have been proposed for creating measurement models. These

models quantify some parameters of the software system and set forward a hypothesis

on the relationship between them. The Goal Question Metric was proposed to find the

metrics, by stating the goals of the measure, asking questions that could meet the goals,

and proposing metrics that could answer the questions. In the work on GQM/MEDEA

(Briand, Morasca, and Basili, 2002), the aim is to make a prediction system, i.e., one

that sets forth hypothesis on relationships between the metrics, that aims to make them

quantitatively verifiable. The first step is to create the setting of the empirical study

by identifying measurement goals. These motivate an empirical hypothesis that re-

lates independent attributes to other dependent attributes. After careful definitions of

measures for the independent and the dependent measures, the hypotheses are refined

and verified. GQM/MEDEA takes also the experience factory as a factor into the ex-

perimental setting, as we have seen useful. Another measurement framework, SQUID

(Software Quality in Development Projects) (Bøegh, et al., 1999) involves determining

internal and external measures from a quality framework and subsequently attempts

to find the relationships between them. The SQUID Data Model and Quality Process

provide a method for this work. An important factor of SQUID is to store the inferred

relationships in the software development’s experience base. In GQM/MEDEA, the

input to the setting of the empirical study is the current literature and the experience

factory. Of course, those models can be used for user interface evaluation, but case

studies with that focus are lacking to the best of our knowledge. Research on user

interface evaluation has focused on problem detection and correction, e.g., compar-

ison between methods for uncovering usability problems and characteristics of such

problems with the aim of understanding them, prioritizing their removal and ideas for

redesign. In a review of articles appearing in a special issue on interplay between eval-

uation and user interface design (Hornbaek and Stage, 2006), Cockton (2006) calls for

further research on richer evaluation planning, including answering questions on why

we are evaluating, which instruments will be used, which levels of performance will

designate success, and what information and artifacts are given to evaluators?

9.2 RESEARCH STUDY

In this paper, we set forth research questions that have emerged from our work in pro-

totyping and evaluation of two case studies in the domain of air traffic control. The

aim of presenting the case studies is to learn how an evaluation model can help us

better understand the relationship between cause and effect in user interface develop-

ment, hoping to thereby elevate our comprehension of the interaction between design

and evaluation. The next section gives an overview of two design experiments where

www.manaraa.com

206 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

low-fidelity prototypes have been used and a third one that was evaluated with a high-

fidelity prototype. Examples in the remainder of the paper are taken from the case

studies.

9.2.1 Case Studies

The two case studies reported here are taken from the domain of air traffic control. The

duty of the air traffic controllers in the studies is to service aircraft en route in oceanic

environments, i.e., cross the North-Atlantic. They monitor aircraft against predeter-

mined routes, but issue clearances for requests for different routes provided it is safe,

i.e., if aircraft adhere to separation rules. Source and means of data communication

varies, ranging from automatic data transfer from radar to interactive communication

via voice through radio. In the following two subsections, we describe how elicitation,

design and evaluation were carried out in these projects. Each of the subsections is di-

vided into short description of goals, elicitation of needs, design of the user interfaces

and an informal self-assessment on the success of the methods. Table 9.1 provides an

overview of the methods used.

Table 9.1 Methods used in case studies

Activity/Case Speech Agent Integrated workstation

1st iteration 2nd iteration

Elicitation Literature review

Observation

Interview

Observation

Interview

Existing systems and

requirements studies

Class and

Collaboration diagrams

COGNITIVE MODELS OF

USER’S WORK

Heuristics evaluation

using cognitive principles

Design Architecture

Sequence diagrams

Prototype

Paper sketches

Three alternative

approaches suggested

High-fidelity proto-

type of three fea-

tures.

Evaluation Wizard of Oz with

air traffic controllers

Post-experiment

questionnaire

Qualitative and

Quantitative data

gathered

Claims analysis

Walk-through of draw-

ings of user interface with

participation of air traffic

controllers

post-task questionnaire

Qualitative data gathered

Hypothesis formed

Think-aloud usabil-

ity test with users

post-task question-

naire

post-experiment

questionnaire

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 207

9.2.2 Using Language Technology to Improve Communication in ATC

Short Description of Goals . Voice communication in Air Traffic Control is

the most volatile part of the Air Traffic Control System. The aim of the project of the

first case study was to use language technology to make communication more reliable

and efficient, thus improving safety in aviation (Ragnarsdottir, Waage, and Hvannberg,

2003).

Elicitation. During the elicitation phase, previous literature on voice communi-

cation in Air Traffic Control was analyzed. Oceanic Air Traffic Controllers were ob-

served while at work at a center of air traffic control and so were operators at a Center

of Radio Communication. The researcher interviewed expert controllers to learn about

the domain of Air Traffic Control and to understand the role of voice communication.

The challenge in this domain is that fortunately errors in voice communication are

relatively infrequent so they are not easily observed.

Design. A prototype of a speech agent was developed with the goal of recognizing

errors in the communication between pilot and controller. Several options to replace

or add a speech agent to existing voice communications were explored and their ar-

chitecture designed, but a prototype of one was implemented. Sequence diagrams in

UML describing realistic scenarios, edited by expert users, of dialogues were created

for three characteristic scenarios of the problem domain.

Evaluation. A Wizard of Oz evaluation was conducted with five air traffic con-

trollers of varying expertise. The evaluation was scripted, using the dialogues de-

scribed in the previous section, with the tester playing the role of the pilot against each

of the controllers. Quantitative data was gathered on errors made by a speech server

during evaluation. Quantitative and qualitative data on controllers’ attitude towards

trust and performance was gathered in a post-test questionnaire. The evaluator asked

questions about the type of feedback a speech agent should give in case of error in the

voice communication between controller and pilot.

Since the prototype was of low fidelity, it was not feasible to evaluate it in con-

text, other than to create real life scenarios and to have actual users. Evaluators were

not conducted in Air Traffic Controllers’ room or in a group with collaborators of the

work, such as controllers of the same center, supervisors, or controllers of adjacent

centers. Although this is considered important, and perhaps especially so when re-

searching voice communication, it would have been impossible to get permission for

evaluation on site and hence had to be staged.

Assessment of Methods. Since the tests had to be scheduled in advanced, and

resources were scarce, there was no time to pilot test the evaluation on site. Hence,

some of the evaluation instances were flawed because of failures in the supporting

technology. The script worked very well, the performance of the speech agent was

measured and the controllers were able to understand and reflect on the concepts.

Controllers’ attitude towards expected efficiency, safety and their trust on the speech

agent has to be viewed in context of the artifact evaluated, but were good enough to

www.manaraa.com

208 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

proceed to the next phase. Performance of the speech agent gave the designer good

ideas on how to improve its design and implementation.

9.2.3 Integrating Different User Interfaces in a Controller’s Workstation

Short Description of Goals. The controller workstation under examination

consists of three main systems with graphical user interfaces. The Flight Data Pro-

cessing System (FDPS) system, which manages electronic flight strips, the Radar Dis-

play, which displays radar data and Situation Display, which is a backup system for the

FDPS system and displays the data from on a geographical background. The fourth

system is the communication system. The project investigated the integration of the

above systems and proposed a spatial display, taking into account emerging techno-

logical and organizational contexts (Johannsson, 2004).

Elicitation. As in the previous case study, observations were made during elici-

tation of the problem, but a wider range of controllers was interviewed (Johannsson

and Hvannberg, 2004). The architecture of different subsystems of a workstation was

analyzed including their relationships.

An abstract model of the problem domain was created based on manuals of oper-

ations, previous requirements studies, observation of work and current systems. The

model was expressed with text and UML diagrams.

A user interface model was reengineered from two current systems in order to find

possible anomalies and basis for integration of two user interfaces. Cognitive models

of user’s work were examined (Major, Johannsson, Davison, Hvannberg, and Hans-

man, 2004). Heuristic evaluation, using cognitive principles, was carried out on cur-

rent ATC’s workstation to find deficiencies.

Design. Three alternative approaches to integration were described but one of them

was designed in detail as drawings of user interfaces. Snapshots of user interfaces of

design ideas for several features were created in a drawing tool. Sketches were ordered

into a short storyboard explaining a scenario of work. Except for the description of

the integration of the three alternatives, no models of designs were made, neither as

scenarios, interactions, navigations, dialogues nor structure of user interfaces. The

second iteration of the workstation was implemented in a high fidelity prototype.

Evaluation. Evaluation did not take place in context, except that participants were

air traffic controllers. Controllers were asked to give a preference to one of three

alternative approaches to integration of the two user interfaces. In a first part of the

evaluation, a researcher conducted claims analysis (Rosson and Carroll, 2002) of three

alternative approaches to integration.

In a second part, evaluations of snapshots were made with controllers of varying ex-

pertise. No interaction took place in the evaluation of the first version, but instead the

researcher described situations to users. For some features, several alternatives were

presented and users were asked to rate them and discuss, but for others only one design

was presented. The method of evaluation was an interview with predetermined ques-

tions about safety, performance, and invited design suggestions from the controllers.

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 209

Two iterations of the storyboard evaluations took place with feedback from the former

affecting the latter.

After an implementation of the proposed user interface of the workstation in a high-

fidelity prototype, air traffic controllers evaluated it in a think-aloud test with five

scenarios and answered post-scenario and post-experiment questionnaires.

Assessment of Methods. The snapshots of designs of user interfaces provided

valuable means for interviewing users about the new ideas. Researchers received good

ideas from users and the two iterations showed that improvements were achieved. The

triangulation of evaluation methods, i.e., claims analysis and users’ preference gave

researchers additional confidence in the results.

The abstract models drawn and the cognitive models examined during elicitation

were both useful to understand the complex problem domain and to explore new de-

sign ideas for specific aspects. The diagrammatical models were particularly helpful

in moving away from the current context to try to predict the technological and or-

ganizational contexts. For the high-fidelity prototype, it proved challenging to design

evaluation task scenarios and data that was convincing and close to the context.

9.3 ELICITING NEEDS AND CONTEXT

In this and the following two sections, we describe the activities of the lifecycle of user

interface development, with the aim of linking them together. We end each section

with questions or challenges as means towards this goal and we cite examples from

the two case studies to support the questions. The first activity in a human-centered

design is to understand and specify the context of use. Contextual inquiries (Beyer

and Holtzblatt, 1998) and ethnographic approaches have been gaining popularity in

recent years. Less is known about how to create work products that are useful for

software engineers or user interface designers. Context, partnership, interpretation,

and focus are four principles that guide contextual inquiry. The first and most basic

requirement of Contextual Inquiry is to go to the customer’s workplace and observe

the work. The second is that the analysts and the customer together in a partnership

understand this work. The third requirement is to interpret work by deriving facts, or

make hypothesis that can have implication for design. The fourth principle is that the

interviewer defines a point of view while studying work. The output of this activity

can be e.g., a work model and Beyer and Holtzblatt (1998) suggest several models

that comprise the work model, i.e., a model of communication, a sequence model, an

artifact, or cultural and physical models. The lack of formalism in these models makes

them difficult for practitioners like engineers to adopt. Semi-formal models in UML

could replace or complement these informal models. Both task models and cognitive

models, describing the problem domain, have been widely discussed, but, apart from

a few exceptions, models that analyze (e.g., Jackson, 1995, p. 31; Bergh and Coninx,

2005) and predict behavior of designs in the problem domain are absent.

Vicente (1999) argues that work analysis for systems should identify and model

intrinsic work constraints, and that the models should have formative implications for

design. The motivation is that there is no systematic way to go from results of testing to

prototype attributes, therefore we are dependent on the creativity of the designer to re-

www.manaraa.com

210 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

vise the prototype to remove the problematic effect. Cognitive Work Analysis (CWA)

is an example of such a formative approach to work analysis and so is the Contextual

Design proposed by Beyer and Holtzblatt (Vicente, 1999). Above we listed the mod-

els of Contextual designs that are created, but CWA presents other conceptual distinc-

tions (Vicente, 1999): Work Domain, Control Tasks, Strategies, Social-Organizational
and Worker Competencies. Through analysis of these distinctions, models of intrin-

sic work constraints are created that again lead to system design interventions. In the

following, we give examples of interventions for Strategies, Social-Organization, and

Worker Competencies. Dialogue modes and process flow are based on constraints

derived from strategies. Role allocation and organizational structure are based on

social-organizational constraints. Training and interface form are based on constraints

derived from worker competencies. Neither Vicente nor Beyer and Holtzblatt express

explicitly or maintain in a formal way the design implications of work analysis. Vi-

cente gives informal relationships between the two activities by taking examples, but

work analysis is the subject of Vicente (1999) and not design.

Usually, motivations for system implementation are changes. Those changes are

e.g., due to changing technological contexts of the problem domain, increased scale,

increased demand for quality or changing technological changes in the solution space.

Below, is an example that shows how proposed changes in social-organizational

conceptual distinction have an implication on a design.

A simplified example from the speech agent
Social-Organizational: A speech agent replaces a radio operator.

How can implications of work models on design intervention be modelled and main-
tained?

9.4 DESIGN

The data collected during elicitation and evaluation of the modified problem context

will guide new design ideas. Design can be abstract such as redesign of work or

structure of information, to detailed interactions between a product and the context.

9.4.1 Different Models of Design

Before a user interface is programmed, we can create a model of the design that we

use to evaluate against our requirement and assumptions. The model may range from

being abstract, like diagrams or wire frame, or detailed, such as sketches. Prototypes

of various types, i.e., low vs. high fidelity, experience prototypes (Buchenau and Suri,

2000), vertical and horizontal, throwaway and incremental prototypes, are popular

since they give the user an idea about the look and the feel of the interface. Modeling

languages can describe certain aspects of a user interface such as navigation, dialogue

or architecture such as diagrammatic models e.g., in UML or extensions thereof. As

we saw in our case study, storyboards and textual scenarios are often useful to present

design ideas or concepts respectively early on.

Designers should select the type of model that is most appropriate for the design

feature at hand. For example, when designing complex navigations, a navigational

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 211

diagram that gives an overview of the traversals between contexts will be more useful

than many detailed sketches of designs. On the other hand, when designing presen-

tations for entities that contain a rich collection of information, sketches are more

useful. A complex dialogue implementing a scenario may be best presented with both

sketches and diagrammatic models.

Integrated workstation: Class diagrams were used to analyze consistency between

designs

How can we guide designers to select appropriate models to achieve design goals?
Speech agent: Sequence diagram that described the evaluated scenarios supported the

Wizard of oz evaluation.

How can we guide designers to use a combination of different modeling tools, such
as different fidelities of prototypes, diagrammatic models, text scenarios, or text use
cases?

9.4.2 Multiple Design Ideas

One of the fundamental principles of design is to create multiple design ideas. This

can be a result of a brainstorming session within an interdisciplinary team including

users. When the design team has been a participant in the whole lifecycle, design ideas

are implicitly linked to user needs and context of work.

The rationale for the design idea needs to be made explicit. Otherwise, it will be

difficult during evaluation to validate whether the design feature is coherent in the

problem domain. Several methods have been designed to capture design rationale.

QOC (MacLean, Bellotti, Youngl, and Moranz, 1991) consists of a tree where the root

is the Question or the problems, its children are Options that designers propose to meet

the goals, and the third level is the Criteria according to which we should evaluate the

options. In a study (Shum, 1996) where designers were observed while using QOC,

it was noted that they spent a fair amount of time on renaming and restructuring the

trees. It was also noted that designers had the need to pose questions in the form of

constraints, and to describe trade-offs between options (see the next section). The

tree formalism can grow quite complex, since normally we want to evaluate several

disjoint options together that each represent a solution to a problem, or set forward an

option as a hierarchy of other options. An empirical study showed that while QOC’s

focus is on arguing about multiple Options, it is poorly suited to work with evolution

of a single option, where a single idea is revised iteratively after evaluation.

One of the concerns expressed by the designers was the lack of knowing how to

evaluate the options. A suggestion by Bastide et al. (2005) is to connect a task model

or a scenario to the option that would then provide a basis for evaluation. Additionally,

we suggest that in order to support the whole lifecycle, there should be a link from the

evaluation context to the result of the evaluation, so that it can be assessed whether the

result meets the posed criteria.

Evaluation of the design should be prepared during the design phase. In our

experience, it is not adequate to ask whether a design meets requirements of

efficiency, effectiveness, and satisfaction. This is especially true for design ideas

produced early in the lifecycle, often in low-fidelity prototypes. Designers should

associate evaluation questions with the design ideas during design but not after it and

www.manaraa.com

212 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

describe the expected effect of the design once joined in the problem domain. To

accomplish this, usability specialists should either work on the design team, or, in

small organizations, designers should take on the role of usability test designers.

Integration of ATC: Three alternative design ideas for integration were presented.

Claims analysis was applied to elicit positive and negative consequences. Question-

naires were posted to elicit views on usability of the alternatives.

Integration of ATC: Controls for selecting altitude levels will have the effect on the

controller to focus on specific critical air traffic and reduce the cognitive load, thereby

making decisions easier.

How can we design and describe evaluations of user interfaces that can answer spe-
cific questions about the expected effect of the design?

9.4.3 Trade-offs

Design ideas are created to change a problem domain. There may be different moti-

vation for the change, i.e., technical, social, organizational, or economical. Common

effect of the changes that we are aiming for are increased effectiveness, efficiency, or

satisfaction during operation. Other changes may result in increased safety or less time

for training. A design idea that may cause a positive effect of one aspect of the prob-

lem domain may at the same time cause a negative effect of another. Altshuller (1996)

describes inventions as removing a technical contradiction that comes about when im-

proving one characteristic, it impairs another. We take an example from combining

two user interfaces, Flight Data Processing (Flight strips) and Radar Data into one.

The merging of the two interfaces will eliminate the need to integrate information in

the user’s head but can increase clutter on the display. More automation in the Flight

Controller workstation can lead to less workload in easy low-traffic situations but may

blur the controllers’ mental picture (leading to less efficient or safe operations) during

difficult high-traffic or critical situations. In Altshuller’s (1996) opinion, if we man-

age to remove the need to make the choice, but instead propose a solution to remove

the technical constraints, we have an invention. These technical contradictions can be

discovered, e.g., with claims analysis (Rosson and Carroll, 2002) where positive and

negative consequences of a single design feature are gathered. In Rosson and Carroll’s

proposed claims analysis, consequences to the user are analyzed, but a more detailed

analysis should discover what quality characteristic or parameters of a computer or

a human system are affected. In his Theory of Inventive Problem Solving (TRIZ),

Altshuller (1996) has put forward a way of matching technical constraints between

two parameters with a known inventive solution. In this, Altshuller reuses or adapts a

previous design, not unlike it is done with design patterns. Reuse is the idea here, just

as in design patterns where problems are solved with known patterns that have proved

to be useful in practice.

A different approach is to live with the trade-offs but make them explicitly visible

and traceable. Architecture Trade-off Analysis Method (ATAM) (Clements, Kazman,

and Klein, 2002) describes how we can analyze trade-offs between parameters that

appear in architectural decisions. The method also encourages the designer to identify

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 213

risks, sensitivity points, and non-risk, but these are all tools to make the design

process more transparent. These items can help the designer to devise evaluations to

determine whether the risks materialise or the trade-offs are acceptable. ATAM is a

general tool for architectural analysis but has been used specifically to analyze the

effect of certain design patterns on usability (Bass and John, 2003). The more we

know about the parameters of a design, the more targeted evaluations we can make,

and hopefully make a decision on how to revise or abandon the design features.

Integration of ATC: Controls for selecting altitude levels cause the controller to miss

information in deselected altitudes and therefore deteriorating the mental model of the

current state of the system.

As we see above, when creating different design ideas, there can also be trade-offs

between them. Again, an example is taken from ATC. Either adaptable (i.e., adapted

by the user) or adaptive (i.e., adapted by the computer) user interfaces are meant to

solve the problem of display clutter that can occur during high traffic situations.

Integration of ATC: An adaptive interface can be more efficient than adaptable inter-

face to the controller but less satisfying.

How can we express predicted trade-offs of effects between design ideas?
How can we express conflicting constraining parameters so that we are aware of them
and can even remove them?

9.4.4 Scientific Knowledge

Not only is the domain knowledge input to the design process but also the scientific

domain consisting of the relevant scientific knowledge we have gained. In the

scientific domain of air traffic control, a model of air traffic controller’s cognitive

abilities, Modell des Fluglotsenleistungen (MOF1), has been developed (Niessen

and Eyferth, 2001). It consists of five modules: data selection, anticipation, conflict
resolution, update and control. These modules exist in a lifecycle of the monitoring

cycle, anticipation cycle, conflict resolution, and control, but in the last one, the

controller attempts to sequence his actions because he usually needs to fulfill

many simultaneous goals at the same time. The features that were selected for

implementation in the prototype of the Integrated Workstation, were in the module

data selection and anticipation. For example, the following quote from Niessen and

Eyferth (2001), motivated us to experiment with two different ways of showing

extended data blocks with additional information, either with a tool-tip or with a full

selection of a data block.

Integrated workstation: “. . . aircraft become highly activated, meaning that they

are objects that need attention. Aircraft without these features [vertical movements,

proximity to other aircraft or points in airspace where conflicts frequently occur], are

less activated, and are vaguely represented with a few data that only indicate their

existence.” (Niessen and Eyferth, 2001)

This raised a question, whether controllers foresaw the need to receive assistance

from the system to filter out the relevant flights.

www.manaraa.com

214 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

How can we link design decisions to scientific knowledge and experience base?

9.5 EVALUATION IN CONTEXT

By introducing the new design to the problem domain, we thereby modify it. The goal

of the evaluation is to see how the proposed changes interact with the problem domain.

Many methods of evaluation have been proposed, both analytical and empirical, and

most are manual but some are also automatic. The evaluation results are either qual-

itative or quantitative and sometimes both. Evaluations are done at different phases

in the development life cycle, but close interaction with users from an early stage has

been advocated. Evaluating finished products may be easier but failures detected at

such a late stage may be costly to correct. Hence, designers have focused on early

evaluation with low-fidelity prototypes. The downside is that these evaluations with-

out completed systems or high-fidelity prototypes may not be as reliable e.g., in safety

critical situations.

Although contextual inquiries have been promoted, there has been less emphasis

on evaluations of design in real contexts and, in the case of early evaluation, this may

prove to be infeasible. Experience prototyping (Buchenau and Suri, 2000) has been

proposed as a tool to use for this purpose. Every effort should be made to place the

design in real contexts. One way is to provide training facilities that can accomplish

this and simulators may be another. Designing test scenarios comprises at least two

main factors, the goals, or the task scenario, and the data. A domain expert needs to

be involved in the design of an evaluation. The goal needs to be realistic and not give

away too much information, as occurred in the case of the following example, where

the controller did not look at the screen but saw the answer in the task scenario.

Integrated workstation: Task Scenario: Identify flight NWA67. Assess its surround-

ing traffic by filtering the display so that you are only viewing traffic on flight levels

340, 350, and 360.

Instead of letting the controller find which flight levels to view by looking at sur-

rounding traffic of flight NWA67, the task gives away those flight levels. Hence, the

user does not need to view the display, but consults the task scenario for the informa-

tion.

The task scenario needs to be able to test some specific hypothesis. As we discussed

in the previous section, a designer needs to have a goal. He or she proposes a feature,

a solution to a problem, a resolution of a technical constraint, and he/she wants to

learn whether the solution is working. For example, the following hypothesis was put

forward for a feature called flight level filter. Such a filter displays all flights of one or

more flight levels that are selected.

Integrated workstation: The flight level filter poses a risk if it is left in such a state

that some flight levels were deselected, especially by another person than the current

controller.

By describing the hypothesis, it will be easier to design the task scenario. For

example, in the case above, we need to simulate the situation that the controller is

coming to the workstation after a break and design a situation where critical traffic

becomes invisible because of the deselected flight levels. The hypothesis is confirmed

or rejected after having observed participants while they perform the task. If the test

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 215

had shown that the hypothesis is confirmed, further restrictions may be needed on

flight level filters such that flight levels are deselected when a controller resumes his

working position, or the controller needs to be warned when critical traffic is not in

view. In addition to the task scenarios, participants and other contextual parameters,

e.g., from the surroundings, need to be selected. An evaluator needs to be careful

to control for confounding parameters, or otherwise it may be difficult to draw the

implications.

Speech agent: Controllers were recruited to participate in the evaluation; scenarios

were carefully designed and verified by domain experts to emulate real contexts.

How can we build a context for evaluation of designs during early phases?
Another decision for evaluation is the extent of scope. If the scope is narrow, i.e.,

evaluation is done at one site and the sites are heterogeneous, results may not be gen-

eralizable to another site where contexts are different. Discovering problems encoun-

tered during task observations is not the only goal, but the problems need to be linked

to specific design features; if not it may prove difficult to remove the defect. The

results of an evaluation can be twofold; either the design ideas were not able to cor-

rectly fulfill the assumptions or the underlying model of the problem domain proved

incorrect. This calls for changing the model or changing the design. In the former

case we might have assumed something about the work or its context, but found out

during subsequent evaluation that the assumption was not correct. An example from

the speech agent is that we assumed that controllers spoke at a specific speed with no

delays, which lead to a certain configuration in the agent. This is an example of a re-

lationship between how some knowledge about the problem domain leads to a design

decision. During evaluation, it became evident that the assumption was not correct.

If we have a model of the relationship between the problem domain and the new de-

sign ideas, it will be easier to trace back the causes of failures, correct the underlying

model, and adapt the design. Not all such relationships may be evident beforehand

and some are only realized during evaluation.

Although we have specified the expected effect of a design idea, it may be that it

will lead to some unforeseen effect. The evaluation in context is about finding out

how the new design ideas interact in the changed problem domain. Hence we try to

observe what changes the ideas bring about to the entire problem domain, not only the

immediate user, but other systems and stakeholders.

How can we express the actual effect in the problem domain, resulting from changes
brought on by design ideas?

If we fail to reach the desired effect, we may either trace backward to the docu-

mented causes of the desired effect or else we need to trace it to failed designs or

wrong assumptions in the problem domain.

How can failures (in reaching the desired effect) lead us to failed designs (causes) or
wrong assumptions in the work model?

9.6 FOUNDATION AND CONTEXT OF AN EVALUATION MODEL

Much of what we have discussed above, concerns ways in which to describe more

accurately implications work model changes have on design, predictions of interven-

tions’ effects, or causes of (unwanted) effects. Thereby, we have attempted to fill

www.manaraa.com

216 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 9.2 Development model

the gap identified in the beginning of this paper, namely, that there is a lack of flow

of work products between individual activities of a user centered lifecycle. With the

case studies described in the paper, we have argued that relating the evaluation model

strongly with design will aid design, either initial proposals or revised designs.

Although it is easier for developers to understand the lifecycle consisting of sepa-

rate activities and we understand that it is important to have several iterations of the

activities, the gap between them may be unnecessary. We propose (Figure 9.2) to have

two activities, design and evaluation, which are run concurrently. In addition to tradi-

tional models of problem domain and design, we suggest a further evaluation model

as a central repository. The fourth component, the experience base, will provide us

a knowledge repository to draw upon. These will make up the link between the two

activities of design and evaluation. You will notice that there is no separate elicitation

activity and this is intentional. The distinction between elicitation and evaluation may

not always be clear since evaluation elicits new information and gives us further data

about user needs and their environment. The only difference between them is that

at elicitation usually (but not always) no new design of features is presented. This

constitutes the first iteration, but in subsequent iterations, we use the term evaluation
because some product of the design has entered the domain. The evaluation activity

should not be conducted as a separate activity after the design, but instead planned

for during design and then carried out. We have a practice in software development

where it is recommended to design the test before the implementation. Extreme Pro-

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 217

gramming (Beck, 2002), which is a type of an agile development methodology, has

this practice as one of its main guidelines.

This paper does not suggest instruments to use in the proposed evaluation model,

but rather suggests what questions it should address in Table 9.2.

Table 9.2 Requirements for the design of an evaluation model

Requirements

How can implications of work models on design intervention be modelled and main-

tained?

How can we build a context for evaluation of designs during early phases?

How can we design and describe evaluations of user interfaces where specific ques-

tions about the expected effect of the design are answered?

How can we express predicted trade-offs of effects between design ideas?

How can we express the actual effect in the problem domain, resulting from changes

brought on by design ideas?

How can failures (in reaching the desired effect) lead us to failed designs (causes) or

wrong assumptions in the work model?

It may not be clear which questions should be answered in the evaluation model

and which should be answered in the design model, but we suggest that the questions

of Table 9.3 should be answered in the design model.

Table 9.3 Requirements for a design model

Requirements

How can we link design decisions to scientific knowledge and experience base?

How can we express conflicting constraining parameters so that we are aware of them

and can even remove them?

Finally, we restate a requirement to a design activity: How can we guide designers
to use a combination of different modeling tools, such as different fidelities of proto-
types, diagrammatic models, text scenarios, or text use cases, appropriately to achieve
a design goal?

Although it is stated that the metrics in a GQM/MEDEA measurement model do not

need to be quantitative, the difficulty with a quantitative measure is the requirements

of randomised assignment in experiment and the need for a large number of subjects.

However, one of the benefits of the approach is that the measurement model takes

www.manaraa.com

218 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

into account the tactical goals, e.g., the available resources for the study. In studies

that collect qualitative data, hypotheses are not set forward beforehand. Observations

are made and qualitative data, e.g., text or pictures, are coded, either using predefined

codes or creating categories during the coding process. In the context of HCI, an

example of the former is severity of the usability problem, but an example of the latter

is a particular context of the problem.

Even if qualitative data are collected in usability studies, by describing in text the

problems, the analysis often stops after the data have been coded into usability prob-

lems, number of usability problems, identification of unique problems, classification

of severity etc. When the coding has been completed, there are several ways to derive

a theory (Seaman, 1999). First, a set of statements or propositions is derived from the

codes and the associated patterns of text. In the constant comparison method, codes

are associated with a common theme of interest to the study and thereafter, segments

are grouped into patterns according to the codes they have been assigned. Once a

proposition is developed into a hypothesis, it needs to be confirmed. Again, ways to

carry out the confirmation, apart from careful validation, include triangulation, thus

looking for other ways of deriving the proposition, anomalies in the data, or outliers,

negative case analysis that may contradict the proposition, or replication where only

portions of the study relevant to the hypothesis are repeated. Current practices in qual-

itative usability evaluation have not focused heavily on deriving a theory in such a

way.

9.7 CONCLUSION

In a fast-paced world, yet another model may not seem necessary in the process of de-

velopment. In recent years, there has been a strong trend to advocate various methods

that give the developer the opportunity to show results soon, e.g., with rapid prototyp-

ing methods or agile methods with close cooperation with the customer and frequent

releases in iterative or incremental versions. Grudin’s (1996) criticism of the design

rationale methods was that if methods appear too scientific, which is the danger when

invented by scientists and not practitioners, they may be inefficient and not adopted

in practice. Engineering methods, where there is an understanding when to stop an-

alyzing constraints, trade-offs etc. and plunge ahead and deliver a solution, may be

more likely to return a profit. In engineering, producing cost-effective solutions is

high priority. We should not forget that the characteristics of engineering are to use

known methods and designs, evaluate alternatives, including trade-offs, based on best

practice and scientific knowledge, so that it is possible to make decisions, and for that

we need expertise.

Standards and models have in common that they make development less reliant

on experts. For someone with years of experience in design and evaluation, a large

database of expertise has been built, not only personally, but within his/her surround-

ings in a company, or institution. For someone starting in the area, tools and models

are a necessity. It has been suggested that agile methods for example are not good for

beginners. They make tasks explicit, whereas experts need not rely on strict methods

or models, since they follow or build them mentally. With improved possibilities to

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 219

gather experiences, patterns and cooperate more widely digitally, we will be able to

see the benefit of building or reusing evaluation models.

This paper has presented challenges that need to be addressed to better integrate

evaluation and design. The approach proposed involves specifying different work

products and asking questions about implications of work to design, and cause and

effect. We have used two case studies to illustrate our challenges with simple ex-

amples, expressed above in boxes. They are not meant to be examples of how to

address these challenges, but rather give some initial illustration of the concepts. The

case studies presented in this paper have motivated us to set forward requirements

for more formal description of the processes in human computer interaction develop-

ment. Many of the suggestions are rooted in software design and mathematics that

can be transferred to user interface development. While researching the current liter-

ature on design, evidently considerable accomplishments have been achieved in each

of design and evaluation. Very little has been done to research models that give prac-

titioners tools to relate implication of work practices to design, to relate predictions of

design to future work practices (problem domains) or determine causes of undesired

behaviors although some signs of the latter have been noticed. We conclude that the

questions raised, when determining what type of evaluation should be conducted and

how the results of evaluation can be best used, call for a more formal description that

is envisioned in a semi-formal or formal model. We have motivated the requirements

for such a model and pointed to several areas that we hope will inspire researchers to

propose a modeling language for an evaluation model, but we have not gone so far as

to suggest a specific instrument.

Acknowledgments

Margrét Dóra Ragnarsdóttir, Hlynur Jóhannsson and Jóhann Möller have designed and

evaluated the prototypes of the speech agent and integration of user interfaces (1st and

2nd versions) respectively.

References

Altshuller, G. and Altov, H. (1996). And Suddenly the Inventor Appeared: TRIZ, the
Theory of Inventive Problem Solving. Technical Innovation Center, Worcester, Mas-

sachusetts, USA, 2nd edition.

Bass, L. and John, B. E. (2003). Linking usability to software architecture patterns

through general scenarios. Journal of Systems and Software, 66(3):187–197.

Bastide, R., Lacaze, X., Navarre, D., Palanque, P. A., and Galindo, M. (2005). Can

we rationalise the design and construction of air traffic management systems. In

HCI International 2005, Las Vegas, Nevada, USA, July 22-27, volume 7, pages

CD–ROM. TBD.

Beck, K. (2002). Test-Driven Development. Reading, MA.: Addison-Wesley

Bergh, J. V. and Coninx, K. (2005). Towards modeling context-sensitive interactive

applications: the context-sensitive user interface profile (CUP). In Naps, T. L. and

Pauw, W. D., editors, Proceedings of the ACM 2005 Symposium on Software Vi-

www.manaraa.com

220 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

sualization SOFTVIS, St. Louis, Missouri, USA, May 14-15, 2005, pages 87–94.

ACM.

Beyer, H. and Holtzblatt, K. (1998). Contextual Design: Defining Customer-Centered
Systems. San Francisco, CA: Morgan Kaufmann.

Björner, D. (2006). Software Engineerng 3. Berlin: Springer-Verlag.

Bøegh, J., Depanfilis, S., Kitchenham, B., and Pasquini, A. (1999). A method for soft-

ware quality planning, control, and evaluation. IEEE Software, 16(2):69–77.

Briand, L. C., Morasca, S., and Basili, V. R. (2002). An operational process for goal-

driven definition of measures. IEEE Trans. Software Eng., 28(12):1106–1125.

Buchenau, M. and Suri, J. F. (2000). Experience prototyping. In Proceedings of
DIS’00: Designing Interactive Systems: Processes, Practices, Methods, and Tech-
niques, User Experience, pages 424–433, New York.

Clements, P., Kazman, R., and Klein, M. (2002). Evaluating Software Architectures:
Methods and Case Studies. Reading, MA: Addison-Wesley

Cockton, G. (2006). Focus, fit, and fervor: Future factors beyond play with the inter-

play. International Journal of Human-Computer Interaction, 21:239–250.

Fenton, N., Krause, P., and Neil, M. (2002). Software measurement: Uncertainty and

causal modeling. IEEE Software, 19(4):116–122.

Galliers, J., Sutcliffe, A., and Minocha, S. (1999). An impact analysis method for

safety-critical user interface design. ACM Transactions on Computer-Human In-
teraction, 6(4):341–369.

Grady, R. B. (1992). Practical Software Metrics for Project Management and Process
Improvement. Englewood Cliffs, NJ: Prentice-Hall.

Gray, W. D. and Anderson, J. R. (1987). Change-episodes in coding: When and how do

programmers change their code? In Olson, G. M., Sheppard, S., and Soloway, E.,

editors, Empirical Studies of Programmers: Second Workshop, Human/Computer

Interaction: A Series of Monographs, Edited Volumes, and Texts, pages 185–197.

New York: Ablex Publishing.

Grudin, J. (1996). Evaluating opportunities for design capture. In Moran, T. and Car-

rol, J., editors, Design Rationale: Concepts, Techniques, and Use, pages 453–470.

Hillsdale, NJ: Erlbaum.

Hoegh, R. T., Nielsen, C. M., Overgaard, M., Pedersen, M. B., and Stage, J. (2006).

The impact of usability reports and user test observations on developers’ under-

standing of usability data: An exploratory study. International Journal of Human-
Computer Interaction, 21:173–196.

Hoffman, R. R., Roesler, A., and Moon, B. M. (2004). What is design in the context

of human-centered computing? IEEE Intelligent Systems, 19(4):89–95.

Hornbaek, K. and Stage, J. (2006). The interplay between usability evaluation and user

interaction design. International Journal of Human-Computer Interaction, 21:117–

123.

Hume, D. (1978–1982). 1711-1776: A treatise of human nature: being an attempt
to introduce the experimental method of reasoning into moral subjects. Glasgow:

Fontana/Collins.

www.manaraa.com

CAUSE AND EFFECT IN USER INTERFACE DEVELOPMENT 221

Hvannberg, E. T. and Law, L. (2003). Classification of usability problems (CUP)

scheme. In Proceedings of IFIP INTERACT’03: Human-Computer Interaction, 2:

Usability testing, page 655.

ISO/IEC (1999). ISO/IEC 13407: Human-Centered Design Processes for Interactive
Systems. ISO/IEC 13407: 1999 (E).

Jackson, M. (1995). Software Requirements and Specification. Reading, MA: Addison

Wesley.

Johannsson, H. (2004). Integration of air traffic control user interfaces. Technical re-

port, University of Iceland, Reykjavik.

Johannsson, H. and Hvannberg, E. T. (2004). Integration of air traffic control user

interfaces. In The 23rd DASC, Digital Avionics Systems Conference, Salt Lake City,
USA. IEEE Computer Society.

MacLean, A., Bellotti, V., Young, R. M., and Moran, T. P. (1991). Reaching through

analogy: A design rationale perspective on roles of analogy. In Proceedings of ACM
CHI’91 Conference on Human Factors in Computing Systems, Use of Familiar

Things in the Design of Interfaces, pages 167–172.

Major, L., Johannsson, H., Davison, H. J., Hvannberg, E. T., and Hansman, R. J.

(2004). Key human-centered transition issues for future oceanic air traffic control

systems. In HCI-Aero, Toulouse.

Maxwell, J. A. (2004). Causal explanation, qualitative research, and scientific inquiry

in education. Educational Researcher, 33(2):3–11.

Miles, M. B. and Huberman, M. (1994). Qualitative Data Analysis: An Expanded
Sourcebook, 2nd ed. Thousand Oaks, CA: Sage Publications.

Niessen, C. and Eyferth, K. (2001). A model of the air traffic controller’s picture.

Safety Science, 37:187–202.

Pearl, J. (2000). Causality: Models, Reasoning and Inference. London: Cambridge

University Press.

Ragnarsdottir, M. D., Waage, H., and Hvannberg, E. T. (2003). Language technology

in air traffic control. In the 2nd DASC, Digital Avionics Systems Conference, Indi-

anapolis, IN.

Rosson, M. B. and Carroll, J. M. (2002). Usability Engineering: Scenario-Based De-
velopment of Human-Computer Interactions. San Francisco, CA: Morgan Kauff-

mann.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineer-

ing. IEEE Transactions on Software Engineering, 25(4):557–572. Special Section:

Empirical Software Engineering.

Shneiderman, B. (2002). Creativity support tools. Communications of the ACM,

45(10):116–120.

Shum, S. B. (1996). Analyzing the usability of a design rationale notation. In Moran,

T. P. and Carroll, J. M., editors, Design Rationale: Concepts, Techniques, and Use,

pages 185–215. Hillsdale, NJ: Erlbaum.

Simon, H. A. (1996). The Sciences of the Artificial. MIT Press.

Taylor, S. J. and Bogdan, R. (1998). Introduction to Qualitative Research Methods,
3rd ed. New York: Wiley.

www.manaraa.com

222 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Vicente, K. J. (1999). Cognitive Work Analysis: Toward Safe, Productive, and Healthy
Computer-Based Work. Lawrence Erlbaum Associates, New Jersey.

www.manaraa.com

III Interactive Systems
Architectures

www.manaraa.com

10 FROM USER INTERFACE

USABILITY TO THE OVERALL USABILITY

OF INTERACTIVE SYSTEMS: ADDING

USABILITY IN SYSTEM ARCHITECTURE
Mohamed Taleb, Ahmed Seffah, and Daniel Engleberg

Human-Centered Software Engineering Group

Department of Computer Science and Software Engineering,

Concordia University, Montreal, Canada

mtaleb@encs.concordia.ca, seffah@cs.concordia.ca,

dan.engleberg@sympatico.ca

Abstract. Traditional interactive system architectures such as MVC and PAC decom-

pose the system into subsystems that are relatively independent, thereby allowing the

design work to be partitioned between the user interfaces and underlying functionali-

ties. Such architectures extend the independence assumption to usability, approaching

the design of the user interface as a subsystem that can be designed and tested indepen-

dently from the underlying functionality. This Cartesian dichotomy can be fallacious,

as functionalities buried in the application’s logic can sometimes affect the usability of

the system. Our investigations model the relationships between internal software at-

tributes and externally visible usability factors. We propose a pattern-based approach

for dealing with these relationships. We conclude by discussing how these patterns

can lead to a methodological framework for improving interactive system architec-

225

www.manaraa.com

226 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

tures, and how these patterns can support the integration of usability in the software

design process.

10.1 INTRODUCTION

Software architecture is defined as the fundamental design organization of a system,

embodied in its components, their relationships to each other and the environment, and

the principles governing its design, development and evolution [ANSI/IEEE Std 1471-

2000, Recommended Practice for Architectural Description of Software-Intensive

Systems]. In addition, it encapsulates the fundamental entities and properties of the

application that generally insure the quality of application (Kazman et al., 2000).

In the field of interactive systems engineering, architectures of the 1980s and 1990s

such as MVC and PAC are based on the principle of separating the functionality from

the user interface. The functionality is what the software actually does and what infor-

mation it processes. The user interface defines how this functionality is presented to

end-users and how the users interact with it. The underlying assumption is that usabil-

ity, the ultimate quality factor, is primarily a property of the user interface. Therefore

separating the user interface from the application’s logic makes it easy to modify,

adapt, or customize the interface after user testing. Unfortunately, this assumption

does not ensure the usability of the system as a whole.

We now realize that system features can have an impact on the usability of the sys-

tem, even if they are logically independent from the user interface and not necessarily

visible to the user. Bass and John observed that even if the presentation of a system

is well designed, the usability of a system could be greatly compromised if the un-

derlying architecture and designs do not have the proper provisions for user concerns

(Bass and John, 2001; Raskin, 2000). We propose that software architecture should

define not only the technical interactions needed to develop and implement a product,

but also interactions with the users.

At the core of this vision is that invisible components can affect usability. By in-

visible components, we mean any software entity or architectural attribute that does

not have visible cues on the presentation layer. They can be an operation, data, or a

structural attribute of the software. Examples of such phenomena are commonplace

in database modeling. Queries that were not anticipated by the modeler, or that turn

out to be more frequent than expected, can take forever to complete because the log-

ical data model (or even the physical data model) is inappropriate. Client-server and

distributed computer architectures are also particularly prone to usability problems

stemming from their “invisible” components.

Designers of distributed applications with Web interfaces are often faced with these

concerns: They must carefully weigh what part of the application logic will reside on

the client side and what part will be on the server side in order to achieve an appropriate

level of usability. User feedback information, such as application status and error

messages, must be carefully designed and exchanged between the client and server

part of the application, anticipating response time of each component, error conditions

and exception handling, and the variability of the computing environment. Sometimes,

the Web user interface becomes crippled by the constraints imposed by these invisible

components because the appropriate style of interactions is too difficult to implement.

www.manaraa.com

USABILITY IN SYSTEM ARCHITECTURE 227

Like other authors (Bass and John, 2001; Folmer and Bosch, 2004), we argue that

both software developers implementing the systems features and usability engineers

in charge of designing the user interfaces should be aware of the importance of this

intimate relationship between features and the user interfaces. This relationship can

inform architecture design for usability. With the help of patterns, this relationship

can help integrate usability concerns in software engineering. Beyond proposing a list

of patterns to solve specific problems, our long-term goal is to define a framework

for studying and integrating usability concerns in interactive software architecture via

patterns.

10.2 BACKGROUND AND RELATED WORK

A large number of architectures for interactive software have been proposed, e.g.,

Seeheim model, Model-View-Controller (MVC), Arch/Slinky, Presentation Abstrac-

tion Control (PAC), PAC-Amadeus and Model-View-Presenter (MVP) (Bass et al.,

1998). Most of these architectures distinguish three main components: (1) abstraction

or model, (2) control or dialog, and (3) presentation. The model contains the function-

ality of the software. The view provides graphical user interface (GUI) components

for a model. It gets the values that it displays by querying the model of which it is a

view. A model can have several views. When a user manipulates a view of a model,

the view informs a controller of the desired change. Figure 10.1 summarizes the role

of each these three components for an MVC-based application.

The motivation behind these architecture models is to improve, among others, the

adaptability, portability, complexity handling, and separation of concerns of interac-

tive software. However, even if the principle of separating interactive software in

components has its design merits, it can be the source of serious adaptability and us-

ability problems in software that provides fast, frequent, and intensive semantic feed-

back. The communication between the view and the model makes the software system

highly coupled and complex.

The major weakness of this architecture is the lack of provisions for integrating

usability in the design of the model or abstraction components. For example, Bass

and his colleagues (Bass et al., 2001) identified specific connections between aspects

of usability (such as the ability to “undo”) and the model response (processed by an

event-handler routine).

To study these intimate relationships between the model and the interface, we pro-

posed the following methodological framework to:

1. Identify and categorize typical design scenarios that illustrate how invisible

components and their intrinsic quality properties might affect the usability

(a) Model each scenario in terms of a cause/effect relationship between (a) the

attributes that quantify the quality of an invisible software entity and (b)

well-known usability factors such as efficiency, satisfaction, etc.

(b) Suggest new design patterns or improve existing ones that can solve the

problem described in similar scenarios

(c) Illustrate, as part of the pattern documentation, how these patterns can be

applied within existing architectural models such as MVC.

www.manaraa.com

228 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 10.1 The roles of the MVC architecture components

10.3 IDENTIFYING AND CATEGORIZING TYPICAL SCENARIOS

The first step in our approach for achieving usability via software architecture and

patterns is to identify typical situations that illustrate how invisible components of the

model might affect usability. Each typical situation is documented using a scenario.

Scenarios are widely used in HCI and software engineering (Carroll, 2000). Scenarios

can improve communication between user interface specialists and software engineers

who design invisible components—this communication is essential in our approach.

Within our approach, we define a scenario as a narrative story written in natural lan-

guage that describes a usability problem (effect) and that relates the source of this

problem to an invisible software entity (cause). The scenario establishes the relation-

ship between internal software attributes that are used to measure the quality of the

invisible software entity and the external usability factors that we use for assessing the

ease of use of the software systems.

The following are some typical scenarios we extracted from our day-to-day expe-

riences and from a literature review. Other researchers also proposed other scenarios

(see Kazman and Bass, 2002). The goal of our research was not to build an exhaus-

tive list of scenarios, but rather to propose a methodological framework for identifying

such scenarios and to define patterns that be used by developers to solve such prob-

lems. The scenarios are therefore intended as illustrative examples.

Scenario 1: Time-Consuming Functionalities
It is common for some the underlying functionalities of an interactive system to be

time consuming. Several quality attributes can increase the time for executing these

functionalities. A typical situation is the case where a professional movie designer

www.manaraa.com

USABILITY IN SYSTEM ARCHITECTURE 229

expects high-speed Internet access when downloading large video files, but the tech-

nology of Internet connection makes configuration overly difficult.

The user needs feedback information to know whether or not an operation is still

being performed and how much longer he will need to wait, but sometimes this in-

formation is not provided. Feedback tends to be overlooked, in particular, when the

designers of the user interface and those developing the features are not the same and

there is a lack of communication between them.

Scenario 2: Updating the Interface When the Model Changes Its State
Usability guidelines recommend helping users understand a set of related data by

allowing them to visualize the data from different points of view. A typical method is

to provide graphical and textual representations of the same underlying data model.

Whenever the data model changes, the underlying model should update the graph-

ical and textual representations. In certain cases, the system might not be designed to

automatically update all views when one view changes. This can result in inconsistent

views that can in turn increase the user’s memory load, frustration, and errors.

Scenario 3: Performing Multiple Functionalities Using a Single Control
It is recommended to use a dedicated control for each functionality and in particular

for critical functions, even at the expense of more buttons and menus. When a single

control performs multiple operations, it requires a complex menu structure and choice

of modes, which increases the likelihood of mode errors and other usability problems.

Unfortunately, there is a design trade-off between simplicity in appearance and

simplicity in use. This is a dangerous design trap. Alas, consumers (and organizations)

make purchase decisions based on appearance first, so this is a fundamental conflict

(Norman, 2002).

Scenario 4: Invisible Entities Keep the User Informed
We know that providing the user with an unclear, ambiguous, or inconsistent rep-

resentation of the system’s modes and states can compromise the user’s ability to di-

agnose and correct failures, errors, and hazards. This can happen when a system

functionality allows the user to visualize information that competes or conflicts with

previously displayed information in other views.

To avoid such situations, it is important for the functionality developers to com-

municate the system’s modes and states to the user interface designer. User interfaces

designers should inform the developers about all of the visible consequences related

to the states and modes of the systems.

Scenario 5: Providing Error Diagnostics When Features Crash
When a feature failure occurs due for example to exception handling, the interface

sometimes provides unhelpful error diagnostics to the user.

The user should be notified of the state that the system is currently in and the level

of urgency with which the user must act. The system feature should help the user to

recognize potential hazards and return the system from a potentially hazardous state

to a safe state. Messages should be provided in a constructive and correct manner that

helps restore the system to a safe state.

Scenario 6: Technical Constraints on Dynamic Interface Behavior
Particularly in Web-based transactional systems, technical and logistic constraints

can severely limit dynamic behavior of the interface within a given page. It can there-

www.manaraa.com

230 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

fore be difficult or impossible to design elements that automatically update as a result

of an action elsewhere on the same page. For example, in a series of dependent drop-

down lists “Country”, “Province” and “City”, it may be impossible to automatically

update “Province” as a function of the “Country” selection.

These technical constraints against dynamism are often imposed in Web-based

client-server contexts due to the dictum that the business rules must be separate from

the user interface. Dynamic interface behavior can require the user interface to have

a degree of intelligence that incorporates certain business rules, which conflicts with

the “separate layers” dictum. The alternative is for the client to call the server more

frequently to refresh the page dynamically, but architects tend to avoid this approach

because of the presumed extra demand on bandwidth.

There is no easy solution to this problem. The most important principle in this

situation is to analyze user needs relating to dynamism before making technology

decisions that could have an impact on dynamism. Transactional systems often re-

quire considerable dynamism, whereas purely informational systems can often get by

without dynamism in the user interface. If it is unacceptable for business rules to

be incorporated into the client, then it might be possible to make a business case for

increasing the network bandwidth so as to better support pseudo-dynamic behavior,

involving more frequent page refreshes through calls to the server.

The preceding scenarios are used as an illustrative sample. In total, we have iden-

tified more than 24 scenarios. Len Bass also described a list of 26 scenarios, some

of which were a source of inspiration for our work. Providing an exhaustive list of

scenarios is certainly useful from the industry perspective. However, our goal for this

research is to better understand and validate how software features affect usability in

general, and as such our focus is to model the scenarios in terms of a cause/effect

relationship. This relationship connects the quality attributes of invisible components

with recognized usability factors. Section 10.5 details this perspective.

10.4 PATTERNS AS SOLUTIONS TO THE PROBLEMS

DOCUMENTED AS SCENARIOS

There are different ways to document solutions for the problems described in the pre-

ceding scenarios. In our framework, we have been using design patterns (Alexander et

al., 1997; Gamma et al., 1995). Since the relationship between usability and internal

software properties defines the problem, it has been added into the pattern descriptions

that follow. This measurement relationship is what makes a pattern a cost-effective so-

lution. In short, if a pattern does not improve at least one of the factors described in

the measurement relationship, then it is not a good pattern for the problem described

in the scenario. This aspect is detailed in the next section.

In this section, we present two different types of architecture-sensitive patterns:

Software design patterns. The aim of these design patterns is to propose soft-

ware designs and architectures for building portable, modifiable, and extensible

interactive systems. A classical pattern of this category is the Observer that acts

as a broker between the user interface (views) and the model (Gamma et al.,

1995). When the observers receive notification that the model has changed,

www.manaraa.com

USABILITY IN SYSTEM ARCHITECTURE 231

they can update themselves. This pattern provides a basic solution to the prob-

lem described in scenario 3.

Interaction design patterns, defined at the level of the graphical user interface.

These are proven user experience patterns and solutions to common usability

problems. A number of pattern languages have been developed over the last

few years. Among them, the Common Ground and Amsterdam catalogues play

a major role (Tidwell, 1998; Welie, 1999).

Software design patterns, widely used by software engineers, are a top-down design

approach that organizes the internal structure of the software systems. Interaction

design patterns, promoted by human computer interaction practitioners, are used as

a bottom-up design approach for structuring the user interface. Our position is that

these two categories of patterns need to be combined in order to provide an integrated

design framework to problems described in our scenarios. To illustrate how these

diverse patterns can be combined to provide comprehensive solutions, in the following

sections we describe our five scenarios using interaction and design patterns.

Although a number of de facto standards have emerged to document patterns, we

use a simple description with the following format:

“Name” is a unique identifier.

“Context” refers to a recurring set of situations in which the pattern applies.

“Force”: The notion of force generalizes the kinds of criteria that we use to jus-

tify designs and implementations. For example, in the study of functionality, the

main force to be resolved is efficiency (time complexity). However, patterns deal

with the larger, harder-to-measure, and conflicting sets of goals and constraints

encountered in the design of every component of the interactive system.

“Problem” refers to a set of constraints and limitations to be overcome by the

pattern solution.

“Solution” refers to a canonical design form or design rule that someone can

apply to resolve these problems.

“Resulting context” is the resulting environment, situation, or interrelated con-

ditions.

“Effects of invisible components on usability” which defines the relationship

between the software quality attributes and usability factors.

10.4.1 Software Design Patterns

The first pattern that we have considered is the Abstract Factory pattern, which pro-

vides an interface for creating families of related or dependent objects without spec-

ifying their concrete implementations (e.g., The Toolkit class). In other words, this

pattern provides the basic infrastructure for decoupling the views and the models.

Given a set of related abstract classes, the Abstract Factory pattern provides a way to

www.manaraa.com

232 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

create instances of those abstract classes from a matched set of concrete subclasses.

The Abstract Factory pattern is useful for allowing a program to work with a variety

of complex external entities such as different windowing systems with similar func-

tionality. The second pattern we implemented within our framework is the Command

pattern, which complements the abstract factory by reducing the view/controller cou-

pling.

Another pattern that complements the patterns mentioned in the last paragraph is

the Working Data Visualization pattern.

Name: Working Data Visualization
(Scenario addressed: 2. Updating the Interface When the Model Changes its State)
Problems

If the user cannot see working data in different view modes so as to get a better

understanding of it, and if switching between views does not change the related ma-

nipulation command, then usability will be compromised.

Context
Sometimes users want to visualize a large set of data using a different point of view,

so as to better understand what they are doing and what they need to edit to improve

their documents.

Forces

Users like to gain additional insight about working data while solving problems.

Users like to see what they are doing from different viewpoints depending on

the task and solution state.

Different users prefer different viewpoints (modes).

Each viewpoint (mode) should have related commands to manipulate data.

Solution
Data that is being viewed should be separate from the data view description, so

that the same data can be viewed in different ways according to the different view

descriptions. The user gets the data and commands according to the user-selected

view description.

Effects of invisible components on usability
Effect 1

Quality attributes of invisible components: Integrity

Usability factors affected: Visual consistency

Other relevant patterns we used include Event Handler, Complete Update, and Multi-

ple Update (Sandu, 2001). We use them to notify and update views (scenario 1) using

traditional design patterns such as Observer and Abstract Factory. We incorporated

these patterns into the Subform pattern that groups the different views in the same

container, called the Form (Table 10.1). The Event Handler, Complete Update, and

Multiple Update patterns can be applied in two phases. The first phase changes the

www.manaraa.com

USABILITY IN SYSTEM ARCHITECTURE 233

states of the user interface models in response to end-user events generated by the vi-

sual components, and the second phase updates the visual components to reflect the

changes in the user interface model. Since the update phase immediately follows the

handling phase, the user interface always reflects the latest changes.

Table 10.1 Example of design patterns

Pattern Problem Solution

Event Handler How should an invisible compo-

nent handle an event notification

message from its observable vi-

sual components?

Create and register a handler

method for each event from ob-

servable visual components.

Complete Update How to implement behavior in the

user interface to update the (ob-

server) visual component from the

model

Assume all (observer) visual com-

ponents are out-of-date and update

everything.

Multiple Update How to implement changes in the

model of subform to reflect parent

of subform, child of subform, sib-

lings of subform

Each subform should notify its

parent when it changes the model.

The parent should react to changes

in the subform via the Event Han-

dler and update its children com-

ponents via Complete Update.

Subform How to design parts of user inter-

faces to operate on the model in a

consistent manner

Groups the components that oper-

ate on the same model aspect into

subforms

The next example of software design patterns we propose is the Reduce Risk of

Errors pattern.

Name: Reduce Risk of Errors
(Scenarios addressed: 2. Updating the Interface When the Model Changes Its State;
4. Invisible Entities Keep the User Informed)
Problem

How can we reduce the likelihood of accidents arising from hazardous states?

Forces

Hazardous states exist for all safety-critical systems; it is often too complex and

costly to find every hazardous state by modeling all system states and user tasks;

Risk can be effectively reduced by reducing the consequence of error rather than

its likelihood;

When a hazardous state follows a non-hazardous state, it may be possible to

return to a non-hazardous state by applying some kind of recovery operation.

www.manaraa.com

234 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Solution
Enable users to recover from hazardous actions they have performed. Recovering a

task is similar to undoing it, but promises to return the system to a state that is essen-

tially identical to the one prior to the incorrect action. This pattern may be useful for

providing a Recover operation giving a fast, reliable mechanism to return to the initial

state. Recovering a task undoes as much of the task as is necessary (and possible) to

return the system to a safe state.

Resulting Context
After applying this pattern, it should be possible for users to recover from some of

their hazardous actions. Other patterns can be used to facilitate recovery by breaking

tasks into substeps, each of which may be more easily recovered than the original task.

The user should be informed of what the previous state is that the system will revert

to.

Effects of invisible components on usability
Effect 1:

Quality attributes of invisible components: Integrity

Usability factors affected: Visual consistency

Effect 2:

Quality attributes of invisible components: Suitability

Usability factors affected: Operability

The last example of software design patterns is the Address Dynamic Presentation

pattern.

Name: Dynamic presentation in user interface
(Scenarios addressed: 6. Technical constraints on dynamic interface behavior)
Problem: How can we avoid technical constraints on dynamic behavior of the

user interface?

Forces

Users benefit from immediate feedback on their actions.

Dynamically updating fields can reduce the time required to accomplish a task.

Solutions

Analyze user needs relating to dynamism before making technology decisions

that could have an impact on dynamism. Transactional systems often require

considerable dynamism.

If it is unacceptable for business rules to be incorporated into the client, then it

might be possible to make a business case for increasing the network bandwidth

so as to better support pseudo-dynamic behavior, involving more frequent page

refreshes through calls to the server.

www.manaraa.com

USABILITY IN SYSTEM ARCHITECTURE 235

Resulting Context
After applying this pattern, users will have more immediate feedback on the con-

sequences of their actions, increasing the understandability of the user interface and

reducing errors; in addition, time and effort to accomplish a task will be reduced in

certain cases.

Effects of invisible components on usability
Effect 1:

Quality attributes of invisible components: Functionality

Usability factors affected: Understandability

Effect 2:

Quality attributes of invisible components: Suitability

Usability factors affected: Operability

10.4.2 Interaction Design (HCI) Patterns

Many groups have devoted themselves to the development of pattern languages.

Among the heterogeneous collections of patterns, “Common Ground” and “Amster-

dam” play a major role in this field and wield significant influence (Tidwell, 1998;

Welie, 2000). We also adapated and use some these patterns.

The first basic HCI pattern that we used is the Progress Indicator pattern (Tidwell,

1997). It provides a solution for the time-consuming features scenario (scenario 1).

Name: Progress Indicator
(Scenario addressed: 1. Time-Consuming Functionalities)
Problem

A time-consuming functionality is in progress, the results of which are of interest

to the user. How can the artifact show its current state to the user, so that the user can

best understand what is happening and act on that knowledge?

Forces

The user wants to know how long they have to wait for the process to end.

The user wants to know that progress is actually being made, and that the pro-

cess has not just “hung.”

The user wants to know how quickly progress is being made, especially if the

speed varies.

Sometimes it is impossible for the artifact to know how long the process is going

to take.

Solution

Show the user a status display of some kind, indicating how far along the process

is in real time. If the expected end time is known, or some other relevant quantity

(such as the size of a file being downloaded), then always show what proportion of

www.manaraa.com

236 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

the process has been finished so far, so the user can estimate how much time is left. If

no quantities are known—just that the process may take a while—then simply show

some indicator that the process is ongoing.

Resulting Context
A user may expect to find a way to stop the process somewhere close to the progress

indicator. It’s almost as though, in the user’s mind, the progress indicator acts as a

proxy for the process itself.If so, put a “stop” command near the Progress Indicator if

possible.

Effects of invisible components on usability
Effect 1:

Quality attributes of invisible components: Performance

Usability factors affected: User satisfaction

The second pattern that we integrated in our framework is the Keep the User Fo-

cused pattern, which brings an integrated solution to the problems described in sce-

narios 2, 3, and 4.

Name: Keep the User Focused
(Scenario addressed: 2. Updating the Interface When the Model Changes Its State;
3. Performing Multiple Functionalities Using a Single Control; 4. Invisible Entities
Keep the User Informed)
Context

An application where several visual objects are manipulated, typically in drawing

packages or browsing tools

Problem
How can the user quickly learn information about a specific object they see and

possibly modify the object?

Forces

Many objects/views can be visible but the user usually works on one object/view

at a time.

The user wants both an overview of the set of objects and details on attributes

and available functions related to the object he or she is working on.

The user may also want to apply a function to several objects/views.

Solution

Introduce a focus in the application. The focus always belongs to an object present

in the interface. The object of focus on which the user is working determines the

context of the available functionality. The focus must be visually shown to the user,

for example, by changing its color or by drawing a rectangle around it. The user can

change the focus by selecting another object. When an object has the focus, it becomes

the target for all the functionality that is relevant for the object. Additionally, windows

containing relevant functionality are activated when the focus changes. This reduces

the number of actions needed to select the function and execute it for a specified object.

The solution improves the performance and ease of recall.

www.manaraa.com

USABILITY IN SYSTEM ARCHITECTURE 237

Resulting Context
The Keep the User Focused pattern complements the software design patterns in

the following situations:

Helping users anticipate the effects of their actions, so that errors are avoided

before calling the underlying features.

Helping users notice when they have made an error (provide feedback about

actions and the state of the system).

Providing time to recover from errors.

Providing feedback once the recovery has taken place.

Effects of invisible components on usability
Effect 1:

Quality attributes of invisible components: Integrity.

Usability factors affected: Visual consistency.

Effect 2:

Quality attributes of invisible components: Functionality.

Usability factors affected: Understandability.

Effect 3:

Usability factors affected: Operability.

Quality attributes of invisible components: Suitability.

There is not a one-to-one mapping between software design patterns and HCI pat-

terns. The problems described in a specific scenario can require any number of HCI

and software design patterns, and each pattern may be affected by a number of prob-

lems described in different scenarios. In our approach, we argue that using even a few

patterns can be very valuable, even without an entire pattern language.

Our list of patterns is not intended to be exhaustive. We still are considering some

of the existing patterns (Newman et al., 1995; Buschmann et al., 1996). However, most

of the existing patterns have not originally been proposed to cope with the problem we

are addressing. We are therefore adapting them as we did with the ones we introduced

in this section.

10.5 MODELING CAUSE-EFFECT RELATIONSHIPS BETWEEN

SOFTWARE ELEMENTS AND USABILITY

In Sections 10.3 and 10.4, we focused on specific ways in which internal software

properties can have an impact on usability criteria. In this section, we attempt to

provide a more general, theoretical framework for the relationships between usability

www.manaraa.com

238 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

and invisible software attributes. In particular, among the huge or potentially infinite

number of ways that invisible components can affect usability, we wish to understand

whether there are specific places where we are more likely to find these relationships

or effects. We also wish to know whether there is any structure underlying these

relationships, which would allow us to define a taxonomy of how usability issues arise

from invisible components.

10.5.1 Traditional Model of Relationship Between Invisible Software

Elements and Usability

Usability is often thought of as a modular tree-shaped hierarchy of usability concepts,

rooted in the level of GUI objects, and abstracting progressively up to low-level us-

ability criteria or measures and then high-level usability factors. Figure 10.2 illustrates

this definition of usability and its relationship to parallel “towers” of other software at-

tributes.

Figure 10.2 Traditional “twin towers” model of usability and other software quality factors

Table 10.2 provides more detailed information on the software quality factors and

criteria referred to schematically in the right-hand branch of Figure 10.2. (In princi-

ple, each quality factor would form a separate branch.) In our work, we have adopted

the software quality model proposed by ISO 9126. Table 10.2 is an overview of the

consolidated framework we have been using (Abran, 2003, 2003). The details of this

framework are outside the scope of this paper. The table shows the criteria for mea-

suring usability as well as five other software quality factors including functionality,

reliability, efficiency, maintainability, and portability. This measurement framework

automatically inherits all the metrics and data that are normally used for quantifying a

given factor. The framework helps us to determine the required metrics for (1) quan-

www.manaraa.com

USABILITY IN SYSTEM ARCHITECTURE 239

tifying the quality factors of an invisible software entity, (2) quantifying the usability

attributes, and (3) defining the relationships between them.

Table 10.2 A partial vision of the consolidated ISO 9126 measurement framework

Software quality factor Measurement criteria

Functionality Suitability

Accuracy

Interoperability

Security

Reliability Maturity

Fault tolerance

Recoverability

Usability Understandability

Learnability

Operability

Attractiveness

Efficiency Time behavior

Resource

Utilization

Maintainability Analyzability

Changeability

Stability

Testability

Portability Adaptability

Instability

Coexistence

Replaceability

10.5.2 Taxonomy of Usability Issues Arising from Invisible Components

Relationships between software attributes of invisible components and usability fac-

tors have two properties:

1. They are lateral relationships between the modules of usability and architecture.

2. They are hierarchical relationships between two or more levels of description,

since usability properties are a higher-level abstraction based on architectural

elements.

Thus, to understand the relationship, we need an approach that takes into account

both modularity and hierarchy. In “The Architecture of Complexity” (1962), Herbert

Simon discusses “nearly decomposable systems.” In hierarchic systems, interactions

can be divided into two general categories: those among subsystems, and those within

www.manaraa.com

240 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

subsystems. We can describe a system as being decomposable into its subsystems.

However, as a more refined approximation, it is possible to speak of a system being

“nearly decomposable”, meaning that there are in fact interactions between the sub-

systems, and that these interactions are weak but non-negligible.

Nearly decomposable systems have two properties:

1. Modularity: In the short-run, the behavior of each subsystem is approximately

independent of the other subsystems;

2. Hierarchy (or aggregation): In the long run, the behavior of any one subsystem

depends in only an aggregate way on the other subsystems.

These properties indicate that in reality, the traditional model of usability is an over-

simplification. Although the usability subsystem is fundamentally modular from the

architecture, Simon’s principle of nearly decomposable systems predicts that it is pos-

sible for usability properties to be affected to some degree by architectural properties.

Figure 10.3 illustrates an interpretation of this alternative model of usability.

In Figure 10.3, a node (usability property) at any level of usability can potentially be

influenced by nodes at any lower level of architecture, or conceivably even by combi-

nations of several different levels of architecture. Figure 10.3 is a first approximation.

Simon’s second principle of near-decomposability states that subsystems depend in

only an aggregate way on other subsystems.

Figure 10.3 Revised model of usability, including possible types of cross-relationships with

architecture (bold links)

This principle implies that if architecture has an effect on usability, it will tend

to be in an aggregate way and therefore at a higher level of architecture, rather than

through the effect of an individual low-level architectural component. We interpret

www.manaraa.com

USABILITY IN SYSTEM ARCHITECTURE 241

this principle to mean that the effects of architecture on usability will tend to propagate

from levels of architecture that are closer to the level of usability, rather than farther

away.

Therefore to refine the model, we will assume that the most likely relationships oc-

cur between usability properties and the immediately closest lower architectural level,

and that more distant architectural levels have an exponentially decreasing probabil-

ity of having an effect on usability. The revised model, based on this assumption, is

illustrated in Figure 10.4. This model reflects a more clearly recursive definition of

usability.

Figure 10.4 Most probable types of cross-relationships between usability and architecture

(bold links)

Based on Simon’s principles of nearly decomposable systems, we can conclude

that these types of relationships between architecture and usability are the exception

to the rule, but frequent enough that they should not be neglected.

10.5.3 Application

This measurement model provides a framework within which to explore these excep-

tional ways that architecture can affect usability, so as to work toward a more complete

model of usability. The model is useful because it helps us know where to look for re-

lationships between architecture and usability. Further progress will require detailing

the hierarchies on both sides of the tree, and considering each possible relationship

between nodes at proximate levels. Another goal will be to provide other heuris-

tic principles to further narrow down the likely interrelationships between these two

branches.

www.manaraa.com

242 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 10.3 provides examples of the specific types of relationships that occur in the

scenarios described in section 10.2. The second column refers to the invisible object’s

properties and software qualities identified in the right-hand branch of figures 10.2

through 10.4, and the third column represents the usability properties identified in the

left-hand branch of those figures.

For example, scenario 1 can be modeled as a relationship that connects the perfor-

mance of the software feature with certain usability attributes such as user satisfaction.

It can lead to the following requirement related to scenario 1: “To ensure an 80% level

of satisfaction, the maximum acceptable response time of all the underlying related

features should not exceed 10 seconds; if not the user should be informed and a con-

tinuous feedback needs to be provided”.

Table 10.3 Examples of relationships between invisible software entities and usability fac-

tors

Scenario Quality attributes of invisible components Usability factors affected

1. Performance User Satisfaction

2. Integrity Visual Consistency

3. Functionality Understandability

4. Suitability Operability

5. Recoverability Attractiveness

10.6 CONCLUSION AND FUTURE INVESTIGATIONS

In this paper, we first identified specific scenarios as to how invisible software compo-

nents can have an effect on the usability of the interactive system. Then, we provided

a list of patterns that solved the problems described in the scenarios. This research

effort can benefit software architecture designers and developers, who can use our ap-

proach in two different ways. First, the scenarios can serve as a checklist to determine

whether important usability features (external attributes) have been considered in the

design of the features and the related UI components. Second, the patterns can help

the designer incorporate some of the usability concerns in the design.

More than defining a list of scenarios and patterns that describe the effects of invis-

ible software attributes on software usability, our long-term objective is to build and

validate a comprehensive framework for identifying scenarios. The goal of the frame-

work is to define these patterns as a relationship between software quality factors and

usability factors. In this paper, we have suggested different HCI and software design

patterns as solutions to the problems described in these scenarios and in similar ones.

Every pattern has a set of problems to be solved and a set of goals to be achieved.

We expect that as we gain a better understanding of the relationship between in-

teraction design patterns and software architecture patterns, this knowledge will affect

the evolution of standards in architecture design and GUI software libraries. In fact,

this has already started. Increasingly, developers are making proper use of standard

www.manaraa.com

USABILITY IN SYSTEM ARCHITECTURE 243

GUI libraries and respecting interface design guidelines in a way that considerably

increases the usability of interactive applications. However, more can be done in this

direction, and the approach we have outlined in this paper is an attempt to build a bet-

ter and more systematic understanding of how usability and software architecture can

be integrated.

References

Abran, A., Khelifi, A., Suryn, W., and Seffah, A. (2003). Usability meanings and in-

terpretations in ISO standards. Software Quality Journal, 11(4):325–338.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiskdahl-King, I., and An-

gel, S. (1997). A Pattern Language. London: Oxford University Press.

Bass, L., Clements, P., and Kazman, R. (1998). Software Architecture in Practice.

Reading: MA: Addison-Wesley.

Bass, L. and John, B. E. (2001). Supporting usability through software architecture.

Computer, 34(10):113–115.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern-
Oriented Software Architecture: A System of Patterns., Volume 1. New York: Wiley.

Carroll, J. (2000). Scenario-Based Design of Human-Computer Interactions. MIT

Press.

Folmer, E. and Bosch, J. (2004). Architecting for usability. Journal of Systems and
Software, 70(1):61–78.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing

Series. Reading, MA: Addison-Wesley. http://www.aw.com.

Kazman, R. and Bass, L. (2002). Making architecture reviews work in the real world.

IEEE Software, 19(1):67–73.

Kazman, R., Carrière, S. J, and Woods, S. G. (2000). Toward a discipline of scenario-

based architectural engineering Annals of Software Engineering, 9(1):5–33.

Newman, W. and Lamming, M. (1995). Interactive System Design. Addison-Wesley,

Reading: MA.

Norman, D. (2002). Beyond the computer industry. Commun. ACM, 45(7):120.

Raskin, J. (2000). Human Interface: New Directions for Designing Interactive Sys-
tems. Addison-Wesley, Reading: MA.

Sandu, D. (2001). User interface patterns. In 8th Conference on Pattern Languages of
Programs, Park Monticello, IL, USA.

Simon, H. (1962). The architecture of complexity. Proceedings of the American Philo-
sophical Society, 106:467–482.

Tidwell, J. (1998). Common ground: A pattern language for human-computer inter-

face design [online]. Technical report, http://www.mit.edu/˜jtidwell/
common_ground.html.

Welie, M. (1999). Patterns in Interaction Design: The Amsterdam Collection.

http://www.welie.com/index.html.

www.manaraa.com

11 TOWARD A REFINED PARADIGM

FOR ARCHITECTING USABLE SYSTEMS
Tamer Rafla, Michel C. Desmarais, and Pierre N. Robillard

École Polytechnique de Montréal,

P.O. Box 6079, Station Center-Ville, Montreal, QC, H3C 3A7, Canada

Abstract. Recent investigation reveals that few usability enhancements can be eas-

ily incorporated into the existing design as they are only related to the design of UI;

but many of which may be prohibively expensive. A more recent perspective on the

usability of software systems is that making software more usable is a lot easier to

do if the high-level architecture was designed with usability in mind. Hence, soft-

ware architects should ponder usability before usability professionals are brought into

the project, more specifically during the elicitation of functional requirements. Un-

fortunately, there is a scarcity of methods and guidelines with the scope to ensure

that software developing corporations consider usability requirements in their archi-

tectural design activities. This chapter addresses this need and provides a more devel-

oped approach for architecting usable systems. A non-formal exercise reveals that this

proposed methodology was well-received by participants with different knowledge of

usability. They found the process not too onerous as it guided them in discerning the

concerns that could have a real impact on the architecture.

11.1 INTRODUCTION

Usability is perceived by many to be a concept associated with the design of the user

interface (UI) and has received little attention from software architects. In fact, the

history of UI and software architecture has been marked by the decoupling of the

245

www.manaraa.com

246 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

two disciplines, on the basis that the UI can be changed in any way and at any time

without affecting the software architecture. Classic concepts such as MVC (model-

view-controller) (Goldberg and Robson, 1983) and UIMS (User Interface Manage-

ment Systems) (Pfaff, 1985), as well as the more recent trend toward user interface

markup languages (UIML) (Phanouriou , 2000) all accept the implicit assumption that

the UI and the software architecture can evolve independently during the software

development lifecycle.

However, this is not always the reality as some usability requirements may arise

later in the development cycle, necessitating costly architectural changes. We re-

cently presented a case study that involved quantifying and analyzing the impact of

the late implementation of usability requirement changes on the architecture (Rafla

et al., 2004, 2006). The impact of such changes could have been reduced, or even

avoided, if those usability requirements had been defined and considered prior to the

architectural design phase. The most cost-effective way of ensuring the usability of

software systems is to consider the integration of usability into the initial discussion

of quality requirements.

Bass and John (2003) and Folmer and Bosch (2004) proposed a relatively different

approach to identify the connection between usability and software architecture. Un-

fortunately, their work is theoretical and high-level, and no significant investigation

of their application has been presented. Little is known yet as to how to capture and

organize the usability requirements that are architecturally significant. Information

technology (IT) organizations will face numerous obstacles when trying to implement

these frameworks in their existing software processes. The questions that need to be

addressed are: (i) Which of these approaches should be used in practice? (ii) Can

they be combined to facilitate the integration of usability practices into software de-

velopment? (iii) What are the necessary tools and guidelines to ensure a seamless

integration of these usability engineering best practices into the current software de-

velopment activities?

This chapter is structured as follows. We begin by presenting an overview of Bass

and John’s and Folmer’s models to then discuss the need and the motivation behind

combining their work. We present a non-formal exercise to discuss the utility of the

proposed paradigm and then show how software process practices can be adapted to

include the newly presented usability method.

11.2 AN OVERVIEW OF PREVIOUS WORK

11.2.1 Usability-Driven Software Architecture Patterns

Bass and his colleagues (2003) at the Software Engineering Institute (SEI) initiated

the idea of linking usability to software architecture. Using fieldwork observations of

software development projects, they generated scenarios that expressed a set of gen-

eral usability issues that have potential architectural implications. They also provided

corresponding architectural patterns for implementing every scenario.

For example, Table 1, illustrating the canceling commands scenario, describes the

circumstances under which a user might need to cancel an operation. Being indepen-

www.manaraa.com

TOWARD A REFINED PARADIGM FOR ARCHITECTING USABLE SYSTEMS 247

dent from the design of the UI, if this requirement is not devised when the software

architecture is established, it may be costly to incorporate afterwards.

Table 11.1 Canceling commands (Bass and John, 2003)

Canceling commands
A user invokes an operation, and then no longer wished the operation to be performed.

Systems should allow users to cancel operations.

11.2.2 Architecturally-oriented Usability Patterns

In their investigation of the relationship between usability and software architecture,

Folmer et al. (2004) defined a three-layer model that links general usability require-

ments to more specific usability patterns. They started with attributes that typically

define usability, gradually refining this definition until they arrived at usability proper-

ties (similar to usability requirements) and finally linking those properties to architec-

turally sensitive usability patterns. The three layers defined, shown in Figure 11.1, are

detailed below:

Usability Attributes: This first layer incorporates a number of high-level stan-

dard usability metrics. Such attributes (ISO/IEC, 1998) are: (i) learnability—

how quickly and easily users can be productive with a system that is new to

them; (ii) efficiency—the number of tasks per unit time that the user can per-

form; (iii) reliability—the error rate in using the system and the time it takes to

recover from errors; and, finally, (iv) satisfaction—the user’s comfort level, a

measure of his positive attitude toward the use of the system.

Usability Properties: The usability properties are the design principles that

have a direct bearing on system usability. These properties can guide the re-

quirements gathering and analysis stage of a software development process (for

example, providing feedback to the user, providing explicit user control, provid-

ing guidance, etc.).

Usability Patterns: The architecturally sensitive usability patterns present a

high-level response to a need specified by a usability property (Ferre et al., 2003;

Folmer and Bosch, 2004). They do not provide any specific software solution

to be incorporated into software architecture; they only suggest some abstract

mechanism that could be used to improve usability.

www.manaraa.com

248 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 11.1 Three usability layers of Folmer’s framework

11.3 USABILITY AT THE REQUIREMENTS DEFINITION STAGE

11.3.1 Motivation

We recently presented work that consisted of quantifying the impact of the late imple-

mentation of some of Bass’s usability scenarios into an existing architecture (Rafla et

al., 2006). The architecture of a working Web system was analyzed to note the usabil-

ity concerns that need to be addressed in order to make the application more usable.

The ones that will inevitably increase the usability of our system were extracted.

This study suggested that these architecturally significant usability scenarios are

very high-level and are common to many interactive systems. It proved hard to find the

applicable ones as they are not related to the domain functionality of any system. The

next section discusses how Bass’s usability scenarios can be used in conjunction with

Folmer’s usability properties to facilitate the elicitation of the usability requirements

process.

11.3.2 Capturing Architecturally-relevant Usability Requirements

A Three-Step Brainstorming Session. The purpose of this usability require-

ments brainstorming session is to identify the high-level tasks that the users are ex-

pected to accomplish with the system. End-users may have no clear idea of their

usability requirements and therefore ought to be involved to a small extent in the

usability requirements gathering process. It is our conjecture that usability analysts

should be at the heart of that process and should ensure that the usability concerns

identified by the end-users are realistic and feasible.

In the first step, usability analysts detail Folmer’s usability properties to the users

and provide them with general examples that reflect every usability property. Since

those properties are very high-level, stakeholders are asked to sketch their own usabil-

ity requirements in light of these more general ones. The process is the following:

Users read the entire description of the property (which consists of a brief explanation

of the feature and a general example), and provide a user task related to the system

being developed. Once the usability analysts confirm that this example is valid and ap-

Usability attributes Usability Properties Usability Patterns

Satisfaction

Effectiveness

(learnability/ reliability)

Efficiency

Explicit user control

Feedback

Error prevention

Wizard

Undo

Alert

Progress indication

Guidance

www.manaraa.com

TOWARD A REFINED PARADIGM FOR ARCHITECTING USABLE SYSTEMS 249

plicable to the system being developed, users are then asked to document this example

in detail, or provide other examples that they see as more relevant. This process is

conducted for all of the properties, which ensures that they are completely understood

by the users and that clear usability requirements are captured.

In the second step of the requirements generation phase, users are familiarized with

Bass’s usability scenarios. As the description of each scenario is fairly short (two to

four lines), usability analysts read every scenario out loud and provide a general exam-

ple that would fulfill each one. Providing examples to users is fundamental, as some

of the scenarios are not self-explanatory and not related to the domain functionality

of any system. While usability analysts go through the list of scenarios, users identify

the ones they feel are relevant to their system and write down a concrete example to

ensure that the scenarios are correctly grasped. The scenarios they have trouble under-

standing are also recorded. This small exercise is conducted until all of the scenarios

are understood and the ones that are likely to increase the usability of the system are

extracted.

Once the scenarios from the previous steps are consolidated and prioritized, us-

ability analysts examine the list of usability requirements and go into greater detail

about the requirement by defining use cases that include the interaction required be-

tween the actor(s) and the system (Artim, 1997; Seffah and Hayne, 1999; Seffah et

al., 2005). The defined use cases are used to understand and reason about usability

requirements, and they represent a high-level understanding of the user interface. The

process of writing use cases that correspond to existing high-level tasks can prove

useful in forcing consideration of error conditions and failure modes. Having to sup-

ply pre- and post-conditions for each use case forces usability analysts to think more

logically about the usability requirements and goals of the user.

Reflection. As users may have a fuzzy understanding of usability in general, and

also of the system being developed, this two-step usability brainstorming session can

provide them with a basis for documenting their usability requirements. First, it

would help them focus on building the required understanding of a system they will

use (Folmer’s usability properties), and second, it will develop their tacit knowledge,

which they cannot verbalize or describe due to their lack of experience (Bass’s usabil-

ity scenarios). Presenting the usability properties at the initial stages of the require-

ments generation phase helps users expand their comprehension of the system and

guides them in uncovering the usability issues that could impact their performance

and productivity. This practice serves two purposes: it helps users get a clearer image

of the system, and it presents high-level usability features. The latter could help users

lacking an understanding of usability to widen their usability perspective.

Some usability properties provide an overview of the important usability issues that

need to be considered before the software architecture is devised. However, sometimes

users may not be able to capture usability requirements due to their lack of familiarity

with software usability. The purpose of the scenarios is to present them with specific

usability concerns that have architectural implications. This helps develop users’ tacit

knowledge of usability and allows them to define requirements that might have been

disregarded in the first step of the brainstorming session. It is a step that would also be

www.manaraa.com

250 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

helpful for users who have an above-average understanding of usability and wish to

further develop their tacit knowledge and define more detailed requirements. Hence,

considering the usability properties along with the usability scenarios allows the com-

plete coverage of major usability requirements and ensures that architecturally relevant

usability specifications are identified, documented, and organized prior to architectural

design.

Informal Empirical Investigation. An empirical study is conducted to evalu-

ate the benefits and utility of providing usability scenarios once the usability properties

have been considered. This study required the participants to capture and define the

usability requirements for an existing Web system implemented by a team of software

engineering students at Ecole Polytechnique de Montreal.

Six graduate computer engineering students participated in this exercise. Three of

those participants had successfully taken a 45 hour course on human-computer inter-

action and a 39 hour course on Web usability. Also, one of them had working expe-

rience with the system in one of his software engineering classes. These participants

are referred to here as the Experienced (EXP) team. The other three participants, who

had never been exposed to usability or interface development, are referred to as the

InExperienced (InEXP) team. The reason we grouped the participants into different

teams according to their understanding of usability was to determine whether or not

the users’ understanding of usability and experience has an impact on our proposed us-

ability requirements brainstorming workshop. At the start, the participants were given

the functional requirements of the system and were asked to study them to acquire a

comprehensive knowledge of the system. The participants were then given a list of all

nine usability properties identified by Folmer and his team, with the following aspects

provided for each property. Table 2 illustrates the error management property as an

example.

After having thoroughly examined the list of usability properties, participants for-

mulate usability requirements and associate them with usability properties. More

specifically, they were asked to instantiate the properties in the Web system. For exam-

ple, one of the participants identified the need to provide a mechanism for end-users

to retrieve forgotten passwords without external assistance. This usability requirement

can be associated with the explicit user control property. After having identified their

requirements, Bass’s list of usability scenarios was provided to them. They were then

asked to select the ones that would apply to the system.

Four of the six participants, three from InEXP and one from EXP, found that the

usability properties provided a solid basis for the identification of their usability needs

and guided them in formulating complete requirements. The other two participants,

both from the EXP team, found the properties too high-level, and that more explana-

tions and/or examples should have been provided. However, all six participants found

that the usability scenarios concretely covered a large number of important usability

requirements. They found them to be rather precise and that it was not difficult to

see their relevance to the Web system. Overall, all the participants found the idea of

providing the usability properties before the scenarios are created very helpful, as it

allows them to acquire a general high-level idea of user needs before setting out their

www.manaraa.com

TOWARD A REFINED PARADIGM FOR ARCHITECTING USABLE SYSTEMS 251

Table 11.2 Providing feedback property (Folmer et al., 2003)

Error management
Intent: The system should prove a way to manage user errors. This can

be done in two ways:

By preventing errors from happening, so users can make

no or less mistakes.

By providing an error mechanism, so that errors made by

users can be corrected.

Usability attributes

affected:

Reliability (+): error management increases reliability because

users make fewer mistakes.

Efficiency (+): efficiency is increased because it takes less time

to recover from errors.

Example: Red underline for a syntax error in Eclipse (a popular Java de-

velopment environment)

own requirements. It helped the InEXP team gain additional knowledge of the us-

ability aspects that might impact the system. The scenarios helped in the refinement

of some of the requirements already formulated, as well as in the discovery of new

ones that might have been neglected when working with the usability properties. The

participants were also asked if they had selected usability scenarios that were not ex-

plicitly captured in the usability properties. Our observations are summarized in Table

3 but the complete analysis of the results can be found in Rafla et al. (2007).

Limitations of this Work. Several of the usability properties, those extracted

from Folmer’s work, are somewhat high-level and the list is in no way exhaustive.

Also, some of those usability features need a good deal of interpretation that end-

users might not be capable of providing. They would, for example, require expertise

to understand and apply to the design, and this might be too much to ask of those users.

This point can be taken care of by ensuring that technically strong usability analysts,

preferably experienced software architects with sound knowledge of usability, drive

the usability requirements brainstorming session. Unfortunately, as the link between

usability and software architecture has only recently been discovered, few software

professionals have the required knowledge and proficiency to lead such a usability

requirements generation session.

11.4 USABILITY-CENTERED SOFTWARE DEVELOPMENT PROCESS

This section discusses how usability concerns can be considered in a software process

and how architecturally sensitive usability requirements can be taken into account in

www.manaraa.com

252 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 11.3 Summary of observations

Usability Properties (9) Usability Scenarios (27) Properties vs. Scenarios

EXP-

erienced

6

The only participant who

had already worked with

the system covered

explicit user control.

21

InEXP-

erienced

3

The following five

properties were not

covered by these

participants:

+ Consistency

+ Guidance

+ Minimize cognitive

load

+ Explicit user control

+ Natural mapping

Examples provided

with the properties

were very helpful.

More examples

should be

presented and

categorized by the

type of application

to which they

belong.

14

The following properties

were confusing:

+ Supporting

comprehensive

searching

+ Operating consistently

across views

The following properties

depicted the same

usability feature:

1. Supporting

visualization

2. Making views

accessible

Did the scenarios cover

usability aspects that

were neglected by the

usability properties?

Error management

Checking for correctness√

Guidance

Proving good help
√

Accessibility

Supporting

Internationalization
√

the construction of the initial draft of the architecture. More specifically, the previously

defined usability requirements brainstorming session will be introduced as an activity

in the requirements phase of a development process.

The requirements discipline, an integral part of a software development process,

is concerned with understanding the proposed solution to facilitate the design and

implementation of appropriate software systems. It consists of three activities: Under-

standing the users’ needs by finding actors and writing use cases, defining the system

by structuring and documenting the use cases and finally reviewing the requirements

www.manaraa.com

TOWARD A REFINED PARADIGM FOR ARCHITECTING USABLE SYSTEMS 253

(Figure 11.2). The gathering of usability requirements is conducted concurrently with

eliciting the stakeholder requests, and is part of the understand the users’ needs work-

flow.

The introduction of the brainstorming session to this workflow adds a new role,

which is that of the usability analyst who is responsible for incorporating the user-

centered methodology and guiding stakeholders in eliciting their usability require-

ments. The usability requirements are recorded into the supplementary specifications

artifacts of this generic software process model. The improved supplementary specifi-

cations and the use case model in combination capture a complete set of the system’s

functional and quality requirements.

Figure 11.2 The requirements elicitation workflow

The new role of usability analyst is depicted in Figure 11.3. The usability analyst

works in close collaboration with stakeholders and users to identify the usability com-

ponents that are relevant in the system. The result of the elicitation process is a list of

usability specifications with assigned priority levels. This information is recorded as

architecturally relevant usability requirements, which can be a part of the supplemen-

tary specifications artifact.

11.5 CONCLUSION

The later the changes are made to the system, the more expensive they are to imple-

ment, as certain architectural solutions may hamper usability requirements. Therefore,

usability should be qualified early in the development of a system to support the de-

www.manaraa.com

254 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 11.3 Extra activity in “understanding users’ needs” workflow detail

sign of a satisfying architecture. We investigated some avenues that will facilitate the

proper alignment of those requirements with the software architecture.

We proposed a usability-driven requirements brainstorming session that is modeled

as an activity in the requirements discipline of a software engineering process. The

usability analyst, whose role is a new addition in this discipline, helps stakeholders

define and formalize their usability needs. The first step of the method consists in

helping users define their own requirements by providing them with a list of usability

properties based on the work of Folmer. Users were asked to express a requirement by

underlining which property would be fulfilled if that requirement were implemented.

The usability analyst would guide stakeholders in formulating those requirements as

scenarios. Since users often have only a vague comprehension of their own require-

ments, the second step is to present them with usability scenarios from the work of

Bass, that have already been formulated, which will have an impact on the architec-

ture. Users were asked to extract those they wished to see implemented. Once similar

requirements are merged, usability analysts, playing a pivotal role in the success of the

usability requirements generation process, examine the list of user identified usability

concerns and detail use cases. The systems analyst and the software designer will sub-

sequently use those uses cases to document the software functional and non-functional

requirements and devise the software architecture.

A preliminary empirical study was conducted to assess the benefits and utility of

this workshop. Participants found the usability properties useful, as they provided

them with a guide in articulating their usability requirements. Also, they found the

usability scenarios offered an adequate level of detail, as they provided them with

concrete examples of usability requirements.

References

Artim, J. M. (1997). Integrating user interface design and object-oriented development

through task analysis and use cases. ACM SIG CHI Bulletin, 30(4).

Bass, L. and John, B. E. (2003). Linking usability to software architecture patterns

through general scenarios. Journal of Systems and Software, 66(3):187–197.

Ferre, X., Jursito, N., Moreno, A. M., and Sanchez, M. I. (2003). A software architec-

tural view of usability patterns. In 2nd Workshop on Software and Usability Cross-
Pollination: The Role of Usability Patterns (Interact), Zurich, Switzerland.

www.manaraa.com

TOWARD A REFINED PARADIGM FOR ARCHITECTING USABLE SYSTEMS 255

Folmer, E. and Bosch, J. (2004). Architecting for usability. Journal of Systems and
Software, 70(1):61–78.

Folmer, E., van Gurp, J., and Bosch, J. (2003). Investigating the relationship between

software architecture and usability. In Software Process - Improvement & Prac-
tice: Special Issue on Bridging the Process and Practice Gaps between Software
Engineering and Human Computer Interaction.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and its Implemen-
tation. Reading, MA: Addison-Wesley.

ISO/IEC (1998). ISO/IEC 9241-11: Ergonomic requirements for office work with vi-
sual display terminals (VDT)s—Part 11 Guidance on usability. ISO/IEC 9241-11:

1998 (E).

Pfaff, G., editor (1985). User Interface Management Systems. Springer-Verlag, New

York. Proceedings of the IFIP/EG Workshop on User Interface Management Sys-

tems, Seeheim, FRG, Oct. 1983.

Phanouriou, C. (2000). UIML: A Device-Independent User Interface Markup Lan-
guage. Ph.D. thesis, Vermont University.

Rafla, T., Oketokoun, R., Wiklik, A., Desmarais, M. C., and Robillard, P. N. (2004).

Accommodating usability-driven changes in existing software architecture. In

IASTED 8th International Conference on Software Engineering and Applications
(SEA), pages 150–154, Cambridge, MA.

Rafla, T., Robillard, P. N., and Desmarais, M. C. (2006). Investigating the impact of

usability on software architecture through scenarios: A case study on Web systems.

Journal of Systems and Software, 79(3):415–426.

Rafla, T., Robillard, P. N., and Desmarais, M. C. (2007). A method to elicit architec-

turally sensitive usability requirements: its integration into a software development

process. Software Quality Journal.
Seffah, A., Gulliksen, J., and Desmarais, M. C., editors (2005). Human-Centered Soft-

ware Engineering: Integrating Usability in the Development Process. New York:

Springer.

Seffah, A. and Hayne, C. (1999). Integrating human factors into use cases and object-

oriented methods. Lecture Notes in Computer Science, 1743:240–250.

www.manaraa.com

12 TRACE-BASED USABILITY

EVALUATION USING ASPECT-ORIENTED

PROGRAMMING AND AGENT-BASED

SOFTWARE ARCHITECTURE
Jean-Claude Tarby*, Houcine Ezzedine**, and Christophe Kolski**

*Laboratoire LIFL-Trigone, University of Lille 1,

F-59655 Villeneuve d’Ascq Cedex, France

**2 LAMIH – UMR8530, University of Valenciennes and Hainaut-Cambrésis,

Le Mont Houy, F-59313 Valenciennes Cedex 9, France

{houcine.ezzedine, christophe.kolski}@univ-valenciennes.fr

Abstract. To evaluate how people use interactive applications, many techniques and

methods are proposed. In this chapter, we describe two innovative evaluation ap-

proaches that exploit the concept of traces as a way of capturing the usage of the

system. The first approach uses Aspect-Oriented Programming; the second proposes

an explicit coupling between agent-based architecture and evaluation agents. These

two approaches are compared.

12.1 INTRODUCTION

Interactive system evaluation has been a very rich research and application domain

since the 1970s. To evaluate how people use interactive applications, many techniques

and methods can be applied; they have been the subject of numerous studies and clas-

sifications (Jacko and Sears, 2002; Jordan et al, 1996; Nielsen, 1993; Sweeney, M.,

257

www.manaraa.com

258 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Maguire, M., and Shackel, 1993; Whitefield et al., 1991; Wilson and Corlett, 1996) .

Most of them are widely used in companies and research laboratories. New methods

or variants of methods appear and are tested progressively, according to new needs and

specificities coming from the emergence of information and communication sciences

and technologies. Among them, automatic and semi-automatic methods and tools are

considered as promising (see for instance Hilbert and Redmiles, 2000, and Ivory and

Hearst, 2001), both generally and in specific application domains, such as website

evaluation (Beirekdar, 2004; Ivory, 2004; Mariage et al., 2005).

In this chapter, expanding on Tarby et al. (2007), we present two complementary

approaches that help to prepare the evaluation as from the early stages of a project:

the objective is to couple design and evaluation by using innovative technologies and

paradigms. The aim of this coupling is to produce usage-oriented traces to evaluate the

utility and usability of interactive applications. The first approach uses the paradigm

of aspect-oriented programming in order to integrate the mechanisms of traces into

interactive applications. The notion of trace has been the subject of various studies in

the HCI field (Hilbert and Redmiles, 2000). The second approach proposes an explicit

coupling between the agents of an architecture based on software agents on the one

hand, and evaluation agents on the other hand. In this chapter, these two approaches

are first described; then they are compared using methodological criteria as well as

technical ones.

12.2 FIRST APPROACH FOR EARLY USABILITY EVALUATION:

INJECTION OF THE MECHANISM OF TRACES BY

ASPECT-ORIENTED PROGRAMMING

In this part, we begin by presenting the basic principles of aspect-oriented program-

ming. Then we explain how the trace mechanisms are introduced by using the concept

of aspect.

12.2.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) originated from Xerox PARC investigations on

new programming paradigms. AOP is an as an extension of Object-Oriented Program-

ming: indeed, complementary generic mechanisms significantly come to improve the

separation of concerns within the applications (Filman et al., 2005).

In a traditional approach (see Figure 12.1), the business objects manage their tech-

nical constraints locally (identification/authentication, security, transactions, data in-

tegrity). The duplication of these crosscutting elements in methods of classes leads to

a phenomenon of dispersion and interlacing of the level system concerns and increases

the complexity of the code. AOP allows the modularization of these elements by the

addition of a new dimension of modularity, the aspect. The scope of the crosscutting

concerns supported by AOP exceeds that of the current solutions such as the EJB.

Join point, advice, aspect, and cut point are the principal concepts introduced by

AOP. A join point represents a particular location in the flow of the program instruc-

tions (beginning or end of method execution, field’s read or write access, ...). An

advice is a method which is activated when a precise join point is reached: the weav-

www.manaraa.com

TRACE-BASED USABILITY EVALUATION 259

Figure 12.1 AOP basic principles compared to traditional object oriented-approach

ing mechanism inserts the advice calls in the initial code either in a static way (at

compile-time) or in a dynamic way (during execution). Advice can execute before,

after, or around the join point. An aspect is a module which allows the association

between advices and join points by means of cut points. Cut points are used to define

a set of join points at which an advice will have to activate. Furthermore, a cut point

makes it possible to capture the execution context of join points. For a method call,

this context includes the target object, the arguments of the method, and the reference

of the returned object, all of which is most useful information when a trace mechanism

is to be injected.

Based on the principle of inversion of control (IOC), AOP thus extracts the de-

pendencies on the technical concerns from the business code by locating them in the

aspects and by managing them from outside by the mechanism of weaving. It conse-

quently becomes possible to focus on business logic.

The code below shows an example of bank account consultation. In this example,

the BankAccount class has business methods directly associated to it (for example, to

With the traditional

object-oriented approach,

the code of classes mixes

the business code and the

code of crosscutting

functionalities.

With the aspect-oriented

approach, the code of

classes contains only the

business code and the

crosscutting

functionalities are written

in the aspects. After

weaving, the code of

classes contains the

functionalities brought

by the aspects.

www.manaraa.com

260 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

display the total amount in the account). However, if the consultation of the accounts

depends on a level of access, rather than to put the test associated on this level of

access in the BankAccount class, we put it into an aspect which will be woven on

the Display method of the BankAccount class. If the level is sufficient, the business

method is executed (it is called using “proceed”); otherwise, we execute another code

(here a simple error message). Thus, if we want to change the policy of account access

later, we only need to modify the CheckLevelSecurityAccess aspect and weave it again

with the application.

public class BankAccount {
...
public void display() {
// display the amount of the bank account
}
...
}
public aspect CheckLevelSecurityAccess {
pointcut checkLevel ():
execution(void textbf{BankAccount.display}()) ;

before() : checkLevel (s) {
if (getLevelSecurityAccess() $<$ 5)

{ System.out.println(‘‘You do not have a sufficient
level of security to consult this bank account.’’);
}

else proceed();
}
}

Moreover, AOP proposes the mechanism of introduction. This mechanism allows

the modification of classes, interfaces, or even of existing aspects: it is possible to

inject a method or an attribute into a class, to add a relation of heritage, to specify that

a class implements a new interface. A classical use of the mechanism of introduction

is the implementation of design patterns (for example, the Observer pattern, Gamma

et al., 1995) in classes that did not possess them before.

12.2.2 Traces by Aspects

Thanks to the principle of separation of concerns, AOP can inject trace mechanisms

in existing applications (see Figure 12.2, step 1) by writing aspects (step 2) which on

the one hand listen for user actions, method calls, changes in data values, etc., and

on the other hand produce the traces. These aspects are then woven with the initial

code (step 3) which remains intact. The code produced by weaving then contains the

initial code and code of aspects (step 4). The initial application can be used in an

absolutely normal manner without the aspects or be traced with them (step 5). The

trace mechanism can thus be disengaged with no effect on the initial code.

Our trace technique uses a sequence of aspects and is implemented through an

Eclipse plug-in that we developed. This plug-in generates two sets of files. The first set

www.manaraa.com

TRACE-BASED USABILITY EVALUATION 261

Figure 12.2 Injection of mechanism of traces by aspects

contains the aspects related to the traces which are to be recovered; the content of these

aspects is thus specific to the traces to be produced. Each aspect of this set specifies

the method to be traced, when the trace must be produced (mainly at the beginning or

the end of the method), and the parameters to recover; at the end, after the weaving of

aspects, we injected only one line of code by trace to be produced into the application.

The second set of files is an invariant package, composed of files whose contents are

immutable, whatever the traces are to be generated. The role of this second set is, for

each trace, to intercept the execution of the line of code inserted by the first set, and to

process this interception by recovering the parameters that it returns. These parameters

then make it possible to generate the XML code of trace. The aspects generated by our

plug-in are then woven with the initial code (step 3) which is not modified at all in its

contents. The code produced by weaving then contains the initial code and the code

of the aspects (step 4). The initial application can be used in an absolutely normal

manner without the aspects or be traced thanks to them (step 5). The trace mechanism

can thus be disengaged with no effect on the initial code.

To produce a trace, we need three types of information: data to be traced, when to

produce the trace, and where to store it. Traced data mainly relate to the functional core

(and consequently the associated tasks) and the user interface (actions from the user,

but also displayed data, . . .). For example, it is possible to trace the beginning, the end,

or the interruption of a task, the opening of a window, the selection in a drop-down list,

etc. Because our work is use-oriented, it is easier to trace the actions of the user when

the functional core and the user interface are built from a task-oriented design method.

Thus, if the application is designed with an evaluation-oriented approach as presented

in Tarby (2006), it is easy to recover other data such as the context of execution of the

tasks, the role of the user (in CSCW for example), etc.

www.manaraa.com

262 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Most of the time, the traces are produced when a method is called or at the end

of the execution of the method, and these methods may be associated to tasks. AOP

provides us with all the requested services for the production of traces (cf. before and

after keywords present in AOP). Moreover, it is easy to parametrize the production of

traces, for example to produce them using a dedicated thread, or only if a particular

condition is true.

For the time being, traces are generated in XML files (step 6) whose contents are

parametrized by a set of formats also written in XML (step 2). This allows us to gen-

erate traces in different formats while emitting the same information from the traced

application. Although we privilege traces in XML format, the external definition of

formats will make it possible to generate very compact textual files (not XML). An

extract from a file of formats is given below. It corresponds to the tracing of the use

of a CVS (Concurrent Versions System) integrating a “chat”. Concerning the traces

associated with the chat, two different types of format are proposed: one to trace the

messages sent, and the other regarding icon modifications from the chatters.

<formats>
<!-- for the trace of CVS -->
<format name=‘‘chat_CVS’’>
<comment>Traces of CVS chat</comment>
<type name=‘‘dated_message_sending’’>
<comment>Dated sending of

message</comment>
<attr>sender</attr>
<attr>receivers</attr>
<attr>message</attr>
<attr>time</attr>
</type>
<type name=‘‘icon_change’’>
<comment>Change the icon</comment>
<attr>new_icon</attr>
<attr>pseudo</attr>
</type>
</format>
<format name=‘‘ftp’’>
<comment>Traces of FTP</comment>
<type name=‘‘upload’’>
<comment>Sending of files</comment>
<attr>sender</attr>
<attr>file</attr>
<attr>time</attr>
</type>
</format>
</formats>

An extract of traces obtained during the use of the CVS is shown below:

<appli start="14:52:35.439" id=‘‘CVSChat’’>

www.manaraa.com

TRACE-BASED USABILITY EVALUATION 263

<chat_CVS type=‘‘icon_change’’
new_icon=‘‘Bruce Lee’’
pseudo=‘‘arnaud’’

/>
<ftp type=‘‘upload’’

sended=‘‘arnaud’’
file=‘‘projet.zip’’
time="14:56:45.23"

/>
<chat_CVS type=‘‘dated_message_sending’’

sended=‘‘JC’’
receivers=‘‘all’’
message=‘‘Hello! How are u ?"
time="14:57:44.612"

/>

With our approach the exploitation of traces is facilitated because we choose the

data we want to trace, as well as the format for the result, unlike approaches based on

“log” files. The analysis of traces (step 7) produces statistics, task models (step 8),

filtered information, etc. This side of our work is not presented in this paper. At the

moment, this analysis is done after the production of traces, but we plan to perform

real-time analysis in the future (for an adaptation of the application, to advise the user,

etc.). Our work is similar to works such as Akşit et al. (1992), Balbo et al. ; Weber

and Kindler, (2003), Ducasse et al. (2006), Egyed-Zsigmond et al. (2003), El-Ramly

et al. (2002), and Tarby (2006). It uses AspectJ (AspectJ project) but it could be done

with other languages which support AOP such as aoPHP, PHPAspect, and JAC (Java

Aspect Components project). We currently use our work within the design and the

tracing of task-oriented components (Bourguin et al., 2007).

12.3 SECOND APPROACH: INTERACTIVE AGENT-BASED

ARCHITECTURE AND EVALUATION MODULE

12.3.1 Agent-Oriented Architecture for Interactive Systems

Several architecture models have been put forward by researchers over the past twenty

years. Two main types of architecture can be distinguished: architectures with func-

tional components (Langage, Seeheim, Arch and their derived models) and architec-

tures with structural components (PAC and its derived models (Coutaz, 1987), the

MVC model (Model-View-Controller; from Smalltalk) and its recent evolutions, AMF

and its variants (Ouadou, 1994), H4 (Depaulis et al., 2006)). The classic models of

interactive systems distinguish three essential functions (presentation, control and ap-

plication). Some models (such as the Seeheim and ARCH models) consider these

three functions as being three distinct functional units. Other approaches using struc-

tural components, and in particular those said to be distributed or agent approaches,

suggest grouping the three functions together into one unit, the agent. The agents are

themselves organized hierarchically among composition or communication principles:

for instance PAC and its derived models, or the MVC model.

www.manaraa.com

264 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 12.3 Global agent-oriented architecture for interactive systems

These architecture models propose the same principle based on separation between

the system (application) and the human-machine interface. Thus, an architecture must

separate the application and the interface, define a distribution of the services of the

interface, and define an exchange protocol. The interest in separating the interface

from the application is to facilitate the modifications to be made on the interface with-

out touching with the application. Figure 12.3 proposes a comprehensive framework

for architecture (Ezzedine et al., 2006; Grislin-Le Strugeon et al., 2001), showing

a separation in three functional components, called respectively: interface with the

application (connected to the application), dialogue controller, and presentation (this

component is in direct contact with the user).

These three components group together agents:

1. The application agents which handle the field concepts and cannot be directly

accessed by the user. One of their roles is to ensure the correct functioning of

the application and the real time dispatch of the information necessary for the

other agents to perform their task,

2. The dialogue control agents which are also called mixed agents; these provide

services for both the application and the user. They are intended to guarantee

coherency in the exchanges emanating from the application towards the user,

and vice versa,

3. The interactive agents (or interface agents), unlike the application agents, are

in direct contact with the user (they can be seen by the user). These agents

co-ordinate between themselves in order to intercept the user commands and

to form a presentation which allows the user to gain an overall understanding

of the current state of the application. In this way, a window may be consid-

ered as being an interactive agent in its own right; its specification describes its

presentation and the services it is to perform.

For interactive systems with agent-based architecture, it is necessary to propose

new evaluation approaches. A principle of coupling between such architectures and

evaluation agents is now described.

User

Application agents Control agents Interface agents

Application

Service

User

Application agents Control agents Interface agents

ApplicationApplication

Service

www.manaraa.com

TRACE-BASED USABILITY EVALUATION 265

Figure 12.4 Principle of coupling between agent-based architecture of the interactive

system and its evaluation (Trabelsi, 2006)

12.3.2 Principle of Coupling Between Agent-based Architecture and

Evaluation Agents

Our initial aim was to propose a tool for collecting objective data, adapted to agent-

based interactive systems. This tool is, in fact, an electronic informer; it consists

of a program, invisible to the user (of the system to be evaluated), which transmits

and records all the interactions (user actions and system reactions) in a data base.

The exploitation of this data base then aims at providing the evaluator with data and

statistics enabling him/her to draw conclusions with regard to various aspects of utility

and usability.

As this informer is intended for the evaluation of agent-based interactive systems,

it must be closely related to the architecture of the system to be evaluated (Ezzedine

et al., 2006; Trabelsi, 2006). We are particularly interested in the interactive agents.

The electronic informer, Figure 12.4, consists of several informer agents which have

been deduced using the architecture of the system to evaluate and more particularly

starting from the multiagent system concerning presentation. It is based primarily on

the acquisition of information and specific data of the system to be evaluated (user

actions and system reactions). This information and data will make it possible to

rebuild the tasks really performed by the user (a posteriori mode) and to confront

them with the model of tasks to be carried out (a priori mode).

Let us suppose we have a presentation module made up of n interactive agents

(each one being able to interact with the user); n evaluation agents will be instanced

and connected to the interactive agents. During the interactions with the user, the n

Evaluator

Agent informer 1

Agent informer 2

User

Improvements

HCI reactions
A

ct
io

ns
 li

nk
ed

to
 th

e i
nt

er
ac

tio
ns

Agent informer 3

Agent informer n

Interactive system to evaluate

…
Storage of
interaction

data

Treatment
of

interaction
data

(in a form
useful for the

evaluator)

Evaluation assistance system

www.manaraa.com

266 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 12.5 Architecture of the evaluation assistance system

evaluation agents memorize in real time the data concerning interaction between the

user and the n interactive agents. After the tasks have been performed, the data is

analyzed automatically; with a user interface specifically intended for the evaluator,

the data is presented to the evaluator after a time lapse. The data can range from

a bottom level, corresponding to simple user or system events, to higher levels (for

example concerning task level). Examples are available in Trabelsi (2006).

In order to assist the evaluator of agent-based interactive systems, in the follow-

ing section we propose an evaluation assistance system based on such a principle of

electronic informer.

12.4 TOWARDS AN ASSISTANCE SYSTEM FOR THE EVALUATION

OF AGENT-BASED INTERACTIVE SYSTEMS

The system suggested for helping with the evaluation of interactive systems based on

agents is composed of several modules, shown in Figure 12.5 (Trabelsi, 2006).

The electronic informer module, directly connected to the interactive system to

be evaluated, uses the principles described in the preceding section as regards the

association of an informer agent to each agent of the interface. The creation of these

informer agents is deduced directly from the architecture of the system which is to

be evaluated, more specifically from the presentation multiagent system (cf. example

given in figure 12.6).

Once the interaction data has been collected and stored, it is used by a module able

to generate a task model. This is based on the exploitation of agent Petri nets, inspired

by parametrized Petri nets (Gracanin et al., 1994), selected for their ability to handle

entities of the agent type, according to principles described in Ezzedine et al., (2006):

the model obtained corresponds to that of the real activity. This module is also able to

generate a model corresponding to the task to be performed, whose components are

Stockage
de

données

?

evaluateur

Module
RdP

agent

BMT

O R

BSA

Sp
éc

ifi
ca

tio
n

de
s a

ge
nt

s

M
od

ul
e s

im
ul

at
io

n R
dP

ag
en

ts
/

R
dP

ag
en

ts/

Agent
oriented HCI

Data
storage

?

Evaluator

??

Module
RdP

agent

BMT

O R

BSA

Sp
éc

ifi
ca

tio
n

de
s a

ge
nt

s

M
od

ul
e s

im
ul

at
io

n R
dP

ag
en

ts
/

R
dP

ag
en

ts/

Evaluation assistance system

Module
RdP

agent

BMT

O R

BSA

Sp
éc

ifi
ca

tio
n

de
s a

ge
nt

s

M
od

ul
e s

im
ul

at
io

n R
dP

ag
en

ts
/

R
dP

ag
en

ts/

Module
RdP

agent

BMT

O R

BSAModule
RdP

agent

BMT

O R

BSAModule
RdP

agent

BMT

O R

BSA
Module for
generating

task
models

(Agent PN)

BMT

O R

BSA

BMT

OO RR

BSABSA

M
od

ul
e f

or
 a

ge
nt

 P
N

sim
ul

at
io

n/
C

on
fr

on
ta

tio
n/

sp
éc

ifi
ca

tio
n

Agent
Informer 1

Agent
Informer 2

Agent
Informer 3

Agent
Informer n

www.manaraa.com

TRACE-BASED USABILITY EVALUATION 267

Figure 12.6 Association with each presentation agent of an informer agent

available in a base intended for this purpose (stored in the BMT(R) base, cf. below).

Indeed, two bases are available:

1. The Base of Specifications of Agents (BSA) allows the storage of the specifica-

tions of the interface agents. It contains the definition (for each agent) of the sets

E (set of the possible events), C (set of the conditions), R (set of the resources),

Acv (set of the visible actions: such as the action of the user using the mouse or

the keyboard, the reaction of the interface by the posting of new windows and/or

change of their contents), AcN (set of the actions which are not visible to the

user, relating to the interactions between interface agents). The data stored in

BSA is intended to be exploited by the module of task model generation (taking

the form of agent Petri nets).

2. The Base of Task Models (BMT) is composed of two subbases called BMT(O)

and BMT(R). BMT(O) contains the description of the task observed, the models

being generated by the module of generation (of agent Petri nets). BMT(R)

contains the description of the tasks, also called prescribed or reference tasks

(to be realized by the users), such as they are described a priori by the designers

or evaluators via a module allowing Simulation/Confrontation/Specification of

agent Petri nets (cf. below).

The Simulation/Confrontation/Specification module provides the

evaluators/designers with the following three functionalities:

1. Simulation of agent PN: this function allows the visualization of agent PN dy-

namics, and in consequence provides an overview concerning the HCI dynam-

ics; this is because of the exploitation of the task models (modelled by agent

PN) and of the formulation which ensures the evolution in agent PN.

Set of evaluation agents deduced from
the system to evaluateInteractive system to evaluate

www.manaraa.com

268 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

2. Confrontation of agent PN: this function exploits the task models (Observed, of

Reference) for confrontation (according to the principles described in Abed &

Ezzedine, 1998). This confrontation aims make it easier for the evaluators to

identify possible ergonomic problems related to the usability of the interactive

system; for example to realize that agent PN of the task model observed contains

states in which, for example, the user passes by useless stages, or where the

time taken to carry out a task is far greater than that envisaged a priori by the

evaluators/designers.

3. Specification of agent PN: this function consists of providing the evalua-

tors/designers with means (windows) allowing the management (description,

modification, ...) of the agent specification, in other words the definition of the

E, C, R, ACv, ACN sets and their storage in the agent specification base (BSA).

Although it currently exists in the form of a preliminary mock-up, and still requires

various tests and developments, this evaluation assistance system is representative of

approaches which can be set up when the interactive system concerned has an archi-

tecture based on agents (see Figure 12.7).

12.5 COMPARISON BETWEEN THE TWO APPROACHES

A comparison of the two approaches is given in Table 12.1. Although the methods em-

ployed are radically different, they have common objectives: to gather data to compare

predicted tasks and activity, and to highlight utility and usability problems. The ways

used to obtain this data differ according to the approaches. However, the secondary

goals are not the same. With the AOP approach, everything is done so that the initial

application is not modified, whereas with the agents approach, the priority is to follow

the traces in real time. This can be explained by the domains associated to the works

which we have undertaken so far. The approach by agents focuses much more on

complex industrial systems (in fact the supervision of collective transport networks)

where time is a crucial factor, whereas for the moment, the AOP approach has been

used in systems where time does not play such an important part.

Inputs and outputs also differ for the two approaches. Here inputs implies what we

must have before beginning the tracing, and outputs what we obtain during and after

the tracing. With the AOP, we must have the application code and the aspects code;

all of this is generally proposed as packages (the package of aspects also contains the

file of trace formats). With the second approach, it is necessary to have specifications

of the interface agents, describing their services in terms of visible actions and/or non-

visible actions, events, conditions and associated resources (in the BSA database); if

one wants to make a confrontation between the model of real human activities, and

the model of task to perform, the description of this model (in the form of agent PN)

is required.

Concerning the results during or after the tracing, the AOP approach generates an

XML file of the traces produced. During the human-machine interactions, the second

approach makes it possible to collect all user actions, through the evaluation agents,

along with the reactions of the interactive system, and the interactions between agents;

this information is stored. With other modules, it is then possible to generate an agent

www.manaraa.com

TRACE-BASED USABILITY EVALUATION 269

Figure 12.7 Evaluation assistance system

www.manaraa.com

270 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

PN of the task, in the form of documents in PNML (Petri Net Markup Language,

Weber and Kindler, 2003) format. A perspective consists in automatically generat-

ing ergonomic recommendations and criticisms, helping the evaluator to improve the

interactive system (using basic concepts available in Vanderdonckt, 1999).

From the point of view of integration in the software engineering, the two ap-

proaches require particular specifications. The AOP approach needs to know the meth-

ods and data that can be traced, as well as the trace formats; this information can be

collected during the specifications or after the implementation. The agent approach

requires the specification of the elements of the interactive system, and the evaluation

agents. No particular architectural design is necessary for the AOP approach, but the

agent approach requires the design of the interactive system architecture to be based

on interface agents, as well as the establishment of connections between the interactive

agents and the evaluation agents. As regards its implementation, the AOP approach

automatically generates the code of the aspects and the weaving with the initial code

of the application to be traced; the agent approach requires programming with the

services of the interactive system agents and the evaluation agents.

Table 12.1: Comparison between the two approaches

AOP approach
Injection of mechanism
of traces by aspects

Agent approach
Coupling of interface agents and
module of automatic acquisition

Method Use of aspect-oriented

programming to inject

into the initial code of

the application code that

produces traces

Creation of evaluation (observa-

tion) agents coupled with agents

of the interactive application to be

traced

Goals Principal Depends on how traces are exploited: gathering data to com-

pare predicted tasks and real activities, highlighting prob-

lems of utility and usability. . .

Secondary Keep intact the initial

code of the applica-

tion, and tracing done

by weaving code that

produce the traces

Following in real time the use of

the application

Inputs/ out-
puts

Inputs

(what is

necessary to

create the

traces)

Initial package of the

application, package of

trace aspects, file of trace

formats

Specification of the interactive

agents

The model of the task to perform,

under the form of a PN (in the case

in which one aims to compare the

prescribed a real human tasks)

Outputs

(after trac-

ing the

application)

XML file of traces using

the file of trace formats

given as input

The model of the real activity, un-

der the form of a PN (in perspec-

tive: recommendations and criti-

cisms generated automatically)

www.manaraa.com

TRACE-BASED USABILITY EVALUATION 271

Table 12.1: Comparison between the two approaches (continued)

AOP approach
Injection of mechanism
of traces by aspects

Agent approach
Coupling of interface agents and
module of automatic acquisition

Traditional
stages of
software
engineering

Preliminary

or feasibility

study

Explicit consideration in the project of early evaluation by

injection of software mechanisms

Specification Specification of: interac-

tive system, parameters

to be traced, formats of

traces

Specification of: interactive sys-

tem agents, evaluation agents

Architectural

design

(empty) Design of the interactive system

architecture based on interface

agents; connections between inter-

active system agents and evalua-

tion agents

Coding Generation of the code of

the aspects and weaving

between the code to be

traced and the aspects

Coding of the services of the in-

teractive system agents and evalu-

ation agents

User-
centered
evaluation*

Interaction

data gather-

ing

Execution of the woven

code

Espionage by the evaluation

agents of the interactions between

interface agents and the user

Collected

data

Any data accessible by a

method (in the meaning

of object-oriented pro-

gramming) + Time

User and system events, errors,

time of tasks execution, un-

used objects, number of help re-

quests. . .

Languages Current Java with AspectJ C++

Intended Any language supporting

AOP

Java

Types of ap-
plication

Current WIMP applications Information systems used in a

context of supervision of network

of bus and tramway

Intended Information systems, dis-

tance learning applica-

tions, mobile applications

Information systems

Advantages No modification of the

application initial code.

Tracing disengaged very

easily

No modification of the initial code

of the constitutive agents of the in-

teractive system architecture

www.manaraa.com

272 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 12.1: Comparison between the two approaches (continued)

AOP approach
Injection of mechanism
of traces by aspects

Agent approach
Coupling of interface agents and
module of automatic acquisition

Current limits Static weaving of aspects

Need to have public ob-

ject methods to access

data to be traced

Difficult to define the optimal

number of evaluation agents

*Simultaneously with other possible methods: interviews, eye tracking, question-

naire, etc.

From the user-centered evaluation point of view, in addition to the fact that the two

approaches can be coupled with other techniques such as interviews, eye tracking,

etc., they also use different modes to gather data: with the AOP approach, data is

automatically collected by the execution of the code which comes from the aspect

weaving on the initial application code; with the agent approach, data is collected

from the evaluation agents by observing the interactions between the interface agents

and the user. To be collected with the AOP approach, data must be accessible by a

method (with the meaning of the object-oriented programming); this method can be

public, inherited, etc. Time is accessible in the same way. Data collected with the

agent approach is potentially multiple (see Table 12.1).

In their current version, the approaches use different languages. The AOP approach

uses Java and AspectJ; the agent approach is based on C++. In the future, it is expected

that the AOP approach will be extended to other languages supporting AOP such as

PHP, C++, etc., and that the agent approach will use Java.

Concerning the types of application, the AOP approach currently can trace any

application written in Java and supporting AspectJ. However, the traced applications

are today mainly interactive applications (WIMP applications). In the future, it is

planned that the AOP approach will be applied to information systems, distance learn-

ing applications, and mobile applications. The agent approach is currently applied to

information systems used in a context of supervision of network of bus and tramway.

In the future, it should apply to any type of information system.

The advantages of these two approaches are that they provide principles and mech-

anisms facilitating and prompting evaluation in projects. In addition, the AOP ap-

proach allows keeping intact the initial code and thus leading in parallel and/or serially

the realization of the application and the realization of the mechanisms of traces.

The disadvantages are as follows. With the agent approach, it is difficult to define

for the moment the optimal number of evaluation agents (the first version contained an

evaluation agent by interaction agent, and the new version will contain only one for the

user interface; this aspect is under study). In addition, agent approach lets consider

the need for new design methods of user interface envisaging a coupling between

interface agents and evaluation agents. To be more effective, the AOP approach needs

design methods integrating aspects for the evaluation. That means for example that

any potentially traceable data must be accessible by object methods.

www.manaraa.com

TRACE-BASED USABILITY EVALUATION 273

12.6 CONCLUSION

The evaluation field is the subject of active research projects in the HCI community.

The trace-based approaches are very promising. For our part, we are working on two

complementary approaches. The first is based on aspect-oriented programming; it

allows the injection of mechanisms of traces in existing applications. The second is

based on new possibilities offered by agent-based approaches; it aims at ensuring a

coupling between agent-based architectures and evaluation agents. Although turned

towards same objectives in terms of evaluation, these two approaches have different

characteristics, advantages and disadvantages which have been compared in this paper.

For these two approaches, the research perspectives are numerous.

Thus, concerning the tracing by aspects, our major current limit is related to the fact

that we use AspectJ; the produced aspects are consequently static aspects, i.e., having

to be woven with the application during the compilation. Technologies of dynamic
aspects such as JAC (Pawlak, 2002), i.e., being able to be woven, modified or even to

be removed during the execution, are considered. This will not only make it possible

to more easily disconnect the mechanism of traces, but also to propose much more

powerful functionalities such as aspects being able to change their behavior during

the execution of the application. Another perspective relates to the analysis of the

traces generated by the aspects. This analysis is currently performed “manually”, or

improved as far as possible by dedicated XSLT processes, for example to build models

of the users’ effective tasks, these models then may be compared with the prescribed

tasks models of the applications. We can also transform these traces into scenarios

that can be replayed with software environments such as CTTE (Mori et al., 2002) or

K-MADe (Kernal Model for Activity Description) for example. For that, we plan to

provide process libraries (XSLT, Java, etc.) that automate the transformations, making

it possible for example to translate XML files of traces into effective tasks models or

scenarios which can be replayed.

The perspectives for the second approach concern the production of an interac-

tive assistance environment for the evaluators of interactive systems with agent-based

architecture. This environment should be generic, configurable, automatic, and inde-

pendent from the application. In addition, we envisage evaluating the durations of

communication between the agents of the same module or of different modules in

order to improve the global performance of the interactive system.

Although different, the two approaches presented in this chapter can be comple-

mentary. We indeed plan to use the AOP to generate and insert the code of the trace

agents of the second approach. Thus the AOP approach will make it possible to define

the traces (what to trace, where, when, etc.), and the corresponding aspects will be

agents able to produce traces whose visualization will be made in real time.

Acknowledgments. The present research work has been supported by the “Ministère

de l’Education Nationale, de la Recherche et de la Technologie”, the “Région Nord

Pas-de-Calais” and the FEDER (Fonds Européen de Développement Régional) during

the SART, MIAOU and EUCUE projects. The authors gratefully acknowledge the

support of these institutions. The authors also wish to acknowledge José Rouillard,

www.manaraa.com

274 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Philippe Laporte and Thomas Vantroys (LIFL), along with Abdelwaheb Trabelsi and

Chi Dung Tran (LAMIH) for their participation in this research.

References

Abed, M. and Ezzedine, H. (1998). Vers une démarche intégrée de conception-

évaluation des systèmes homme-machine. Journal of Decision Systems, 7:147–175.

Akşit, M., Bergmans, L., and Vural, S. (1992). An object-oriented language-database

integration model: The composition-filters approach. In Madsen, O. L., edi-

tor, Proc. 7th European Conf. Object-Oriented Programming, pages 372–395.

Springer-Verlag Lecture Notes in Computer Science.

Balbo, S. Project WAUTER (Website Automatic Usability Testing EnviRonment).

Beirekdar, A. (2004). Methodology for automating Web usability and accessibility
evaluation by guideline. Ph.D. thesis, UCL, Louvain-la-Neuve, Belgium.

Bourguin, G., Lewandowski, A., and Tarby, J.-C. (2007). Defining task oriented com-

ponents. In Winckler, M., Johnson, H., and Palanque, P. A., editors, Task Models
and Diagrams for User Interface Design, 6th International Workshop, TAMODIA
2007, Toulouse, France, November 7-9, 2007, Proceedings, volume 4849 of Lec-
ture Notes in Computer Science, pages 170–183. Springer.

Champin, P.-A., Prié, Y., and Mille, A. (2003). MUSETTE: Modeling USEs and tasks

for tracing experience. In ICCBR’03, Workshop 5 ’From Structured Cases to Un-
structured Problem Solving Episodes for Experience-Based Assistance, volume

2689 of LNAI, pages 279–286.

Coutaz, J. (1987). PAC: an implementation model for dialog design. In Proceedings
Interact’87, pages 431–436.

Depaulis, F., Jambon, F., Girard, P., and Guittet, L. (2006). Le modèle d’architecture

logicielle H4: Principes, usages, outils et retours d’expérience dans les applications

de conception technique. Revue d’Interaction Homme-Machine (RIHM), 7:93–129.

Ducasse, S., Gı̂rba, T., and Wuyts, R. (2006). Object-oriented legacy system trace-

based logic testing. In CSMR 2006. Proceedings of the 10th European Conference
on Software Maintenance and Reengineering.

Egyed-Zsigmond, E., Mille, A., and Prié, Y. (2003). Club [clubsuit] (trèfle): A use

trace model. In Ashley, K. D. and Bridge, D. G., editors, Case-Based Reasoning
Research and Development, 5th International Conference on Case-Based Reason-
ing, ICCBR 2003, Trondheim, Norway, June 23-26, 2003, Proceedings, volume

2689 of Lecture Notes in Computer Science, pages 146–160. Springer.

El-Ramly, M., Stroulia, E., and Sorenson, P. G. (2002). Mining system-user interaction

traces for use case models. In IWPC, pages 21–32. IEEE Computer Society.

Ezzedine, H., Trabelsi, A., and Kolski, C. (2006). Modeling of an interactive system

with an agent-based architecture using Petri nets, application of the method to the

supervision of a transport system. Mathematics and Computers in Simulation, 70(5-

6):358–376.

Filman, R. E., Elrad, T., Clarke, S., and Akşit, M., editors (2005). Aspect-Oriented
Software Development. Reading, MA: Addison-Wesley.

www.manaraa.com

TRACE-BASED USABILITY EVALUATION 275

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley Professional Computing

Series. http://www.aw.com.

Gracanin, D., Srinivasan, P., and Valavanis, K. (1994). Parametrized Petri nets and

their applications to planning and coordination in intelligent systems. IEEE Trans-
actions on Systems, Man and Cybernetics, 24:1483–1497.

Grislin-Le Strugeon, E., Adam, E., and Kolski, C. (2001). Agents intelligents en in-

teraction homme-machine dans les systèmes d’information. In Kolski, C., editor,

Environnements évolués et évaluation de l’IHM, Interaction Homme-Machine pour
les SI 2, pages 207–248. Hermes, Paris.

Hilbert, D.F. and Redmiles, M.A. (2000). Extracting usability information from user

interface events. CSURV: Computing Surveys, 32:384–421.

Ivory, M. Y. and Hearst, M.Y. (2001). The state of the art in automating usability

evaluation of user interfaces. CSURV: Computing Surveys, 33:470–516.

Ivory, M. Y. (2004). Automated Web Site Evaluation - Researchers’ and Practitioners’
Perspectives. Human-Computer Interaction Series, Vol. 4. Springer-Verlag.

Jacko, J. A. and Sears, A., editors (2002). The Human-Computer Interaction
Handbook: Fundamentals, Evolving Technologies, and Emerging Applications.

Lawrence Erlbaum.

Jordan, P., W., Thomas, B., Weerdmeester, A., B., and McClelland, I., editors (1996).

Usability Evaluation in Industry. London: Taylor & Francis. (paper) 0-7484-0314-

0 (cloth).

Mariage, C., Vanderdonckt, J., and Pribeanu, C. (2005). State of the art of Web us-

ability guidelines. In Proctor, R. and Vu, K.-P., editors, The Handbook of Human
Factors in Web Design. Hillsdale, NJ: Lawrence Erlbaum.

Mori, G., Paternò, F., and Santoro, C. (2002). CTTE: support for developing and

analyzing task models for interactive system design. IEEE Trans. Softw. Eng.,
28(8):797–813.

Nielsen, J. (1993). Usability Engineering. Boston, MA: Academic Press.

Ouadou, K. (1994). AMF: Un modèle d’architecture multiagents multifacettes pour
Interfaces Homme-Machine et les outils associés. Ph.D. thesis, Ecole Centrale de

Lyon.

Pawlak, R. (2002). La programmation par aspects interactionnelle pour la construc-
tion d’applications à préoccupations multiples. Ph.D. thesis, Conservatoire Na-

tional des Arts et Métiers (CNAM), Paris.

Sweeney, M., Maguire, M., and Shackel, B. (1993). Evaluating user-computer interac-

tion: A framework. International Journal of Man-Machine Studies, 38(4):689–711.

Tarby, J.-C. (2006). Evaluation précoce et conception orientée évaluation. In Er-
goIA’2006, pages 343–346.

Tarby, J.-C., Ezzedine, H., Rouillard, J., Tran, C. D., Laporte, P., and Kolski, C. (2007).

Traces using aspect-oriented programming and interactive agent-based architecture

for early usability evaluation: Basic principles and comparison. In Jacko, J. A., ed-

itor, Human-Computer Interaction. Interaction Design and Usability, 12th Inter-
national Conference, HCI International 2007, Beijing, China, July 22-27, 2007,

www.manaraa.com

276 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Proceedings, Part I, volume 4550 of Lecture Notes in Computer Science, pages

632–641. Springer.

Trabelsi, A. (2006). Contribution à l’évaluation des systèmes interactifs orientés
agents : application à un poste de supervision du transport urbain. Ph.D. thesis,

University of Valenciennes and Hainaut-Cambrésis, Valenciennes, France.

Vanderdonckt, J. (1999). Development milestones towards a tool for working with

guidelines. Interacting with Computers, 12(2):81–118.

Weber, M. and Kindler, E. (2003). The Petri net markup language. In Ehrig, H.,

Reisig, W., Rozenberg, G., and Weber, H., editors, Petri Net Technology for
Communication-Based Systems—Advances in Petri Nets, volume 2472 of Lecture
Notes in Computer Science, pages 124–144. Springer.

Whitefield, A., Wilson, F., and Dowell, J. (1991). A framework for human factors

evaluation. Behavior and Information Technology, 10(1):65–79.

Wilson and Corlett (1996). Evaluation of Human Work: A Practical Ergonomics
Methodology (2nd ed.). London: Taylor and Francis.

www.manaraa.com

13 ACHIEVING USABILITY OF

ADAPTABLE SOFTWARE: THE

AMF-BASED APPROACH
Franck Tarpin-Bernard(1), Kinan Samaan(1), and Bertrand David(2)

LIESP, (1) INSA-Lyon, F-69621, France

Bat L. de Vinci - 21, avenue Jean Capelle, 69621 VILLEURBANNE Cedex, France
(2) Ecole Centrale de Lyon

Abstract. This chapter proposes a novel model-based approach for adapting interac-

tive applications to various contexts while ensuring its usability. After a brief overview

of the existing software architecture models for HCI and strategies for adaptation, we

detail the models we are proposing. This includes task, concept, platform, and user

models as well as an interaction model. All these models are linked via an underly-

ing architecture called AMF. It ensures the relationships between all the other models

and encapsulates the key usability attributes. We will also show how these models are

embedded in a process and a method for building adaptive software.

13.1 INTRODUCTION

Maintaining adaptability between platforms while ensuring usability is one of the ma-

jor challenges from both the HCI and software engineering perspectives. Designing

and implementing interactive applications that are adaptable (manually) or adaptive

(automatically) to the context of use requires us to consider the characteristics of the

user, the interactive platform as well as the constraints and capabilities of each envi-

ronment.

277

www.manaraa.com

278 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Several efforts have been made for tailoring an application to a specific context and

especially to the platform constraints. Examples include The Java Pluggable Look

and Feel, Web Clipping, and Content Management Systems such PhP Nuke, ZOPE,

etc. However, ensuring the usability is still an open research question. This is because

the transformation techniques may take into account a specific usability attribute —

most of the time cross-platform consistency — rather than considering the overall set

of attributes that we generally consider in usability measurement (Seffah et al., 2005;

2006).

A state-of-the-art survey shows us that among the large majority of existing ap-

proaches for adaptation, the model-based approach seems to be the most powerful.

Such approach uses high level and abstract representations that can be instantiated

later on in the development lifecycle to meet specific usability requirements. However,

these approaches need to combine apparently independent models such as concepts

(e.g., UML), task (e.g., CTT), platform (e.g., CC/PP) or user profiles. The relation-

ships between these models need to be defined at the design step and refined at runtime

in order to be able to achieve the overall usability. Our belief is that, what we refer to

as an interaction model is the right place to glue together all the other models and us-

ability attributes. This model must support both design stage linking other models and

runtime. In addition, because software engineering and HCI show the importance of

clearly separate functional core from presentation components, our interaction model

is supported by well-structured architecture.

Resulting from the fusion of well-known models either layer-based like Arch

(UIMS, 1992) or multiagents like PAC (Coutaz, 1990), our architectural model, called

AMF, has been implemented in the format of an engine that at runtime executes the

interaction model which links the abstraction and presentation components. AMF

combines best architectural practices, such patterns and specification notations, from

the software engineering and HCI communities. As an example, we use UML models

(from use case to class and sequence diagrams) and user-centered approaches based

on task analysis.

13.2 STATE-OF-THE-ART

The architectural model is one of the key elements needed to achieve efficient and good

software developments: methods–models–tools. First, it organizes software structure

to improve implementation, portability and maintenance. Second, it helps identify the

functional components, which is essential during the analysis and design process. Its

third role is to help further understanding of a complex system, not only for designers,

but also for end-users. For these reasons, the architecture model is the pivot of the

lifecycle and we consider that a good model should fulfill four main goals:

Support specification step (as a formalism);

Be the skeleton of the implementation (as a framework);

Insure consistency for executable applications;

Serve as a representation for dynamic reconfigurations by the user.

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 279

Different approaches have been proposed to support various contexts of execution,

including a wide range of devices and various user profiles. In order to support plastic-

ity (Thevenin, 2001), that is, the ability to adapt itself to context without compromising

usability, different approaches have been proposed.

This set of approaches suggests first revisiting some of the architecture mod-

els developed in the early 1980s. This tendency leads to huge improvements, like

Arch (UIMS, 1992) or multiagent models like MVC (Krasner and Pope, 1988), PAC

(Coutaz, 1990) and PAC Amodeus (Nigay and Coutaz, 1993). Some other researchers

suggest also XML-based languages for specifying HCI and rendering engines as a

mechanism of adaptation.

13.2.1 Interactive System Architecture in HCI

Most HCI architectural models distinguish at least three main components:

Presentation or views that manage the direct interaction with the user.

Controllers, adapters which are in charge of the communication between the

other components and/or with the users.

Abstraction or model which serves as an interface between the functional core

and the two other elements.

These various models have been presented differently in the literature and with

different names. Here we use the taxonomy that classifies the architectures in three

categories: layer-oriented like Seeheim (Pfaff, 1985) and Arch (UIMS, 1992), multia-

gents like MVC (Krasner and Pope, 1988)), PAC (Coutaz, 1987) and AMF (Ouadou,

1994), and hybrid like PAC-Amodeus (Nigay and Coutaz, 1993) or H4 (Depaulis et al.,

1995). Layer-oriented models divide architecture in logical layers. Multiagents mod-

els exploit the layer-oriented model and define each layer in the format of a set of

agents. Hybrid architectures combine the advantages of the two previous approaches

while combining a layered architecture where the dialogue components are structured

using agents.

Although most of the existing integrated development environments (IDE) imple-

ment some of these architectural models, the Cartesian separation between abstraction

and presentation is still not fully achieved. Efforts are needed to support adaptation

in particular hardware diversity. Some progress has been made toward this objective

especially with the advent of platform independent scripting languages C# and the

related standards for describing devices like CDC (SDNa), CLDC (SDNb) or CC/PP

(CCPP).

13.2.2 Adaptation Approaches

Adaptation techniques can be classified in four categories ranging from the easiest to

implement to the most powerful:

Translation techniques;

Markup language-based approaches;

www.manaraa.com

280 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 13.1 Arch model

Reverse and reengineering techniques;

Model-based approaches.

User interface translation is a technique widely used in the context of Web pages.

There exist also tools for HTML ↔ Java translation. These techniques generally pro-

vide insufficient provisions to support usability except in the context where the adap-

tation contexts are vey similar, nearly the same. New approaches such as graceful

degradation (Florins et al., 2004) use the specification of a user interface of the “best”

platform — the one with the highest screen resolution and the most powerful graph-

ical toolkit. During the design, adaptation rules called degradation rules are used by

developers to adapt the best interface to a specific platform. However, this approach

is limited to the translation from one specific language to another available on similar

platforms.

Markup language-based approaches define platform-independent descriptions with

languages that can be easily reused for a large variety of contexts. During the last

five years, many UIDLs (User Interface Description Language) have been introduced.

They usually use XML and CSS scripting languages. Rendering engines are proposed

to analyze the independent descriptions of UI. They produced platform-dependent

description files using specific technologies (HTML, WAP, VoiceXML, etc.). Pop-

ular languages include XUL (Hyatt et al., 2001), XForms (Dubinko et al., 2000),

AUIML (Azevedo et al., 2000), PlasticML (Rouillard, 2003), RIML (Koskimies

et al., 2004). These languages can be classified in two different categories. The

first one groups languages that define Abstract Interaction Objects (AIO) which are

replaced by Concrete Interaction Objects (CIO). For instance, in UIML, a <part
class=‘‘Button’’ id=‘‘MyButton’’/> tag is replaced by a <Button
name= " MyButton’’/> tag in HTML and a JButton object in a Java Swing

rendering. The other family provides a higher level of abstraction specifying user’s

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 281

interactions like “select element” or “select command”. XForms and AUIML use a

choice tag that will be concretized by a set of radio button or a scrolling menu accord-

ing to the device characteristics.

Reverse engineering and interface migration techniques analyze an existing

UI description with the perspective to extract abstract representations (language-

independent and device-independent). These representations are then instantiated for

another platform. First introduced for the migration of text applications to graphical

ones (Chikofsky and Cross, 1990), these representations are now generally based on

the markup languages presented above (e.g., VAQUITA (Bouillon et al., 2004)).

All these approaches are useful and efficient if and only the initial context used for

designing the application and the real contexts have some similaraties. In all other

situations, it becomes very hard to warranty the usability of the application. The situ-

ation is more drastic in the context of interactive applications that are not form-based

like the Web and Wap applications usually modeled.

An answer to these limitations consists of using a set of models (tasks, concepts,

presentation, dialogue, platform, etc.) to describe the application at a high level. For

example, UIML (Abrams et al., 1999; see also Chapter 7), UsiXML (Limbourg et al.,
2004), ArtStudio (Thevenin, 2001), TERESA (Mori et al., 2004), dygimes (Luyten,

2004), and Comets (Calvary et al., 2005). use different models. The abstract Inter-

face, the most abstract model, is transformed step by step into a concrete platform-

dependant Interface according to the information stored in the set of models.

Fundamentally speaking, as these approaches considered a very large set of param-

eters (in the various models), the resulting Interfaces are presumably of better quality

with a higher usability. Furthermore, they support a certain level of adaptation when

the context of use is evolving (change in the user, the interaction platform, the envi-

ronment or the activity). However, these techniques are harder to implement mainly

because of the difficulty to relate all the models together.

We propose a model-based approach and an underlying software architecture model

as both a way to achieve usability and to maintain the same level of adaptability. In the

next section, we present the AMF model, its extensions for adaptation in the context

of a model-based approach.

13.3 AMF AND ITS RELATIONSHIPS WITH OTHER MODELS

13.3.1 AMF Fundamentals

AMF extends multiagent models like PAC while generalizing the concept of facet

while embedding a set of coherent behaviors and functionalities. AMF proposes also

a graphical formalism mainly dedicated to the representation of control using stan-

dardized UI elements. The number of new facets can be unlimitedly defined (such

as Help, Error, Distribution, Rights, etc.) in addition to the classical PAC’s facets

(Presentation and Abstraction). Similar to Object-Oriented approaches, AMF eases

top-down analysis through an iterative decomposition of the application into facets at

different levels.

The agent is the basic element for structuring an AMF-based application. Each agent

can contain other agents and several instances of the same agent class can coexist.

www.manaraa.com

282 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Thus, an application is composed of a hierarchy of agents, which root is the main

application manager agent.

Each agent is composed of several types of facets that group a set of services. Each

service can be reached through a communication port. Three kinds of communica-

tion ports exist: input (I), output (O) and I�O. Input ports represent services offered

by the facet. In contrast, an output port represents a required service. An I�O port

first serves as an input port and then as an output port.

To model the control facet, AMF defines special elements called administrators.

These administrators play three major roles:

The interconnection between the ports,

The execution of a treatment on the data exchanged by the ports,

The handling of activation rules that determine the listened sources and with an

eventual listen order (e.g., first, then second, then . . .) and the targets to notify.

Depending on their types, the administrators can have several source ports and/or sev-

eral target ports. AMF formalism contains several types of administrators; we describe

here the three most used ones (Figure 13.2). The basic administrator is used to build

a unidirectional link without any special treatment. The Return administrator is like

the Simple administrator but it carries back the result returned by the activation of

the targets ports. The result can have several forms depending on the number of tar-

gets connected to the administrator (Single result or Array). The Filter administrator
allows handling the activation of the target ports of a collection of Agents and to se-

lect the most appropriate ones to activate. This allows using multiple instances of

an Agent, especially useful when a collection of items (each one represented by an

Agent) is dynamically managed (e.g., Appointments of a Schedule) or where only

some targets must be activated depending on activation conditions (e.g., the window

having the focus).

Figure 13.2 The main AMF administrators

The control propagation is done according to the AMF tree and can be done only

between ports of facets owned by the same agent, or of ports of facets of subagents. In

this last case, the propagation is done by the administrator of the same agent, the one

containing the facet of the source port. The set of administrators with their links that

owns an agent constitutes its Control Facet as defined in PAC.

Figure 13.3 presents a simple interactive agent using the AMF formalism. This

agent aims to provide feedback to the user when s/he uses a particular functionality

of the application. This user event is represented by the bolt entering the facet and

it leads to the activation of the ‘Start Action’ output port of the facet ‘Presentation’.

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 283

Figure 13.3 A simple interaction described with AMF

The Simple administrator ‘A1’ which has this port as a source dispatches the event

to its unique target port ‘Do Action’. As soon as the service has been executed, the

‘Do Action’ I�O port sends an event as a result of its activation. Being connected

to ‘A2’ Simple administrator, the message it sent is thus dispatched to activate the

‘Echo Action’ input port that will provide the feedback to the user.

Figure 13.4 The AMF and the Arch models links

13.3.2 AMF Implementation

Hybrid Architecture. AMF is supported by several tools including an editor

(or more exactly a graphical development environment) and an execution engine. To

implement the AMF architecture, the AMF facets play the role of adapters (in the

meaning of Arch, Figure 13.4; Samaan and Tarpin-Bernard, 2004). Thus these classes

are concrete facets whereas AMF facets are abstract.

The application control and the adapter facets are finally described within the AMF

formalism. The concrete facets like the concrete presentation and the functional core

are developed in applicative code. The link between AMF facets and the applicative

classes is materialized by the communication ports. Indeed, the ports are associated to

www.manaraa.com

284 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 13.5 AMF meta-model

functions of the applicative classes. We call these functions daemons. The activation

of a port triggers its daemon. Figure 13.5 synthesizes the meta-model of AMF in

hybrid architecture.

Figure 13.6 Links between AMF and the applicative classes (concrete facets)

The AMF Engine. By AMF engine, we are designating a software process that

builds the application and ensures its correct behavior. It links the following elements:

The application functional core objects, whose role consists in handling the data

and performing operations (applicative domain objects);

The application concrete presentation objects (applicative presentation objects);

The “AMF objects” themselves, used to manage the communications between

the applicative objects (administrator, facets, agents, etc.).

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 285

Building the application consists in the setup of the agent hierarchy. The instanti-

ation is done in the following order from the application (top-level) agent: subagents,

facets, daemons, ports and then administrators, in a recursive way.

The execution of an application built with AMF requires to instantiate and to ini-

tialize not only the applicative objects but also the AMF architecture objects (Agents,

Facets, Administrators and Ports). One of the roles of the engine is to perform this

loading operation. It instantiates and loads all objects required to the application ex-

ecution. To determine which objects are required, and then to link them, the engine

starts by parsing the control facets description files, that are written in XML. The ap-

plicative objects are indicated in the XML control files as URLs. Of course, the engine

can also build objects on demand during runtime.

Then, when the user interacts with the application, it will trigger an abstract AMF

facet. This activation launches the event dispatch process, which normally ends by the

activation of an input port of another AMF facet, which triggers the daemon imple-

mented in an applicative object (the concrete facet).

The Editor. The editor is the AMF instrumentation entry point. Indeed, AMF

having a graphical formalism, the first step is to elaborate the architecture model. This

editor (Figure 13.7) allows building graphically the AMF-based applications, while

making possible the description and integration of AMF templates, components, and

configurations.

Figure 13.7 The AMF editor (Architecture edition)

In addition to the production of an XML description of the architecture model, the

editor fully generates the control of the application (the control facets for a hierarchy

of agents), i.e., the links existing between the ports of the facets (Figure 13.8). This

functionality is tremendously interesting, as, even if possible, a handmade production

of this description is tedious and requires memorizing the description element names

to be able to link them.

www.manaraa.com

286 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 13.8 The AMF editor (Generated control visualization)

Besides, the editor generates the skeleton of the Java source files of the concrete

facets. This process is comparable to a UML MDA process, which creates the struc-

ture of the user objects. In our editor, the source files structure generation consists in

creating Java packages and classes with public methods that will be the daemons of in-

put and input/output ports. These methods are currently built with an empty body that

remains to be filled by a programmer to achieve the application creation. Currently,

the editor allows inputting the application source code but in a rudimentary way and

we advices the programmer to use a Java IDE like Eclipse for that. When the code is

written and compiled, it is possible to run the application from the editor invocating

the AMF engine with the application XML control file as a URL (this file contains the

root agent control description which links other control description files depending on

the application). In doing so, the developer can check the application behavior directly

from the editor. As the control part is separated from the source files, the developer can

then modify the control (changing administrators and modifying port interconnection

paths), until the application has the expected behavior.

13.3.3 Links with Other Models

In this section, we describe the relationships between AMF model and respectively

domain and task models.

Interaction Model and Domain Model. The domain model describes all the

concepts of the functional core of the application and their relationships. Nowadays,

its modeling generally relies on the elaboration of UML models and especially class

diagram, which describe the static structure of the application in terms of classes and

relations (association, specialization, aggregation, composition and dependence).

We have stated that in AMF hybrid architecture, each facet is associated to a con-

crete facet called applicative class. This class contains all the methods that are as-

sociated to the ports of the abstract facet and additional elements (data and internal

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 287

functions). As a consequence, the domain model represented by the UML class dia-

gram has usually the same structure as the AMF model; however this is not always the

case. To help the designer, we have identified 3 situations:

Agents are autonomous and each applicative class is associated to an AMF facet.

In this common case, there is a bijective relationship and a full symmetry be-

tween both models.

An agent can use specific services realized by a set of applicative classes that

are not supposed to be visible and accessible (application of the Facade pattern

of Gamma et al., 1995). In this case, these extra classes are not represented

in the AMF model. The considered agent is the only element that has a AMF

representation and the symmetry is partial.

Several agents use a complex set of external applicative classes (e.g.,: database

access, calculation library, etc.). In this case, the external applicative classes

are grouped in a package and a dedicated agent is added to the AMF model to

ensure the links between the agents and the external services.

In the first case, the UML relations between classes (association, aggregation, etc.)

cannot be maintained. Indeed, the flexibility and the power of AMF require not having

direct coupling of applicative classes so that all communications use the AMF engine.

Thus, we have proposed rules of translation of the relations between UML classes to

AMF model:

The aggregation of 2 classes is a composition of AMF agents;

The association between 2 classes leads to the definition of control administra-

tors and communication ports associated to the services that are supposed to be

invoked through the association.

The specialization relations between classes are maintained.

Task Model and Interaction Model. Interaction tasks are naturally associ-

ated to the communication ports of Presentation facets. Similarly, computer tasks can

be clearly associated to Abstraction facets. Normally, these tasks are also directly

linked to the domain model.

In our work, we are using CTT formalism (Paterno et al., 1997) to model tasks. Fig-

ure 13.9 represents the relationships between tasks (interaction and computer oriented)

and the ports of Presentation and Abstraction facets in a sample application. This ap-

plication is a music player that provides classic features like Select Title, Play Title,

Stop Title, etc.

In model-based approaches, the task model is often the starting model for the design

of an interactive application. This model is very flexible in terms of level of details

of the modeling. Indeed the specification can be very high (almost functional), e.g.,

change the volume, or precise, e.g., key ‘up’ / key ‘down’. For this reason, we are

considering two versions of the model: the abstract and the concrete models.

www.manaraa.com

288 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 13.9 Example of relationships between tasks and ports in the interaction model

The abstract task model represents a generic view of the application, which is in-

dependent from the context of use and more specifically to the interaction platform.

If we go back to our sample, the modelled tasks are abstract tasks because they do

not define the elementary interactions. From this model, it is possible to build and

abstract AMF interaction model using what we call abstract ports. These abstract

ports describe services that must be provided without specifying neither how they will

be concretely implemented or their relations with other elements. On AMF graphical

formalism, abstract ports are represented with a dash border.

In the concrete task model, each leaf of the task tree represents a concrete interac-

tion with objects of the user interface and is generally detailed enough for identifying

physical interaction (mouse click, key pressed, etc.). This model is context-dependent.

Passing from abstract to concrete task tree supposes making some interaction choices

and replacing the abstract task by subtrees of concrete tasks.

In the music player sample, if we consider an interaction platform that only pro-

vides a keyboard as interaction mean (it is a very simplified context but sufficient for

the illustration), the abstract task Select Title could be replaced (Figure 13.10) by the

following subtree:

Up/down: to move into the list of titles.

Validate Title: to validate the choice.

This concretization operation is a repetitive task that can be assisted by a design

tool. Indeed, many tasks are repeated similarly in a design. The next section introduces

our vision for the use of task and interaction patterns in the design and implementation

process.

Task and Interaction Patterns. AMF interaction model has been designed

for supporting a “design patterns” approach (Gamma et al., 1995). Indeed, fragments

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 289

Figure 13.10 Example of concretization of an abstract task and the associated abstract

port

of models (agents, facets, ports and administrators) are, by construction, potential

patterns when they define a validated solution to a well-defined problem. We call

these patterns interaction patterns. Thus, several patterns have already been defined

(Tarpin-Bernard et al., 1998) but most of them still need to be identified.

In the specific area of interaction adaptation, we have defined several patterns for

designing the same generic task in various contexts. For instance, we have modeled the

very common task of moving an element inside a container (e.g., an icon in an area, an

item in a list, etc.). The design principle is classical: 1) the container object received

the notification of a request of selection of an element, 2) the element is identified and

the validity of the potential move is checked, 3) the destination is defined, 4) the move

is validated, 5) the display is refreshed.

Figure 13.11 shows a pattern that realizes this abstract task and two concrete vari-

ants corresponding to two different contexts of use. This interaction pattern has a

Container agent that contains component agents (multiple instantiations) which can

be moved (Element). The abstract port (Select&Move) of the Presentation facet of the

composed agent receives the user action events and transmits them to the component

agents. The abstract ports and administrators are replaced by concrete elements in the

concrete version of the pattern corresponding to different contexts of use (here specific

interaction devices).

13.4 A METHOD FOR DESIGNING ADAPTABLE APPLICATIONS

13.4.1 Process

Like most model-based approaches, our method consists in splitting the design and

implementation process in several steps (four in our case).

In the first step, the abstract task model and domain model are elaborated. The

second step defines the abstract interaction model that represents the general structure

using AMF. The third step is a concretization step which leads to a concrete AMF

model according to the context of use. Finally, the application is instanciated and

www.manaraa.com

290 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 13.11 A pattern for the abstract task “ Select and Move an element ”

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 291

executed. In the following section, we are going to describe the main techniques we

are applying in these steps.

Step 1: Elaboration of Task Model and Domain Model. This step is

the most fundamental one. Using techniques generally based on use case identifica-

tion, it is possible to build UML models (class diagrams, sequence diagrams, activity

diagrams) and task diagrams. We will start by building UML or task diagrams. Be-

cause many books are dedicated to this first part of the process, we will not detail it.

However, we underline that at this stage the task model is abstract which supposes to

have generic tasks.

At the end of this step the designer has an abstract task model and a domain model.

Some extra models can also be defined at this stage (user model, environment model,

etc.). In collaborative situations, it is usual to define at this stage a model for specifying

roles and rights.

Figure 13.12 shows a part of the models resulting from this first design step applied

to the music player. The abstract task model is on the left side whereas the UML

class diagram of the functional core is on the right side. The models are not yet

interconnected.

Figure 13.12 Task and domain models after the first design step (music player sample)

This approach is flexible enough to respect designer’s habits and culture (software

engineering vs. HCI ergonomics). In our own works, we usually start by the task

model.

Step 2: Abstract Interaction Design. This step consists in linking previous

models building the abstract AMF interaction model.

The temporal logic of the task model usually organizes interactions in a main modal

flow defining interaction environmements, which are navigation blocks. Inside each

block, the interaction is modal or not (no forced sequence between the tasks).

In order to identify these environments, we currently use the task grouping feature

of CTTE. Thus, considering a specific context and thanks to heuristics, the designer

can obtain a set of PTS—Presentation Tasks Set—which are the tasks that should

www.manaraa.com

292 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

be accessible simultaneously. These interaction environments are represented in the

interaction model by AMF agents that are not naturally identified in the domain model.

However, the domain model is very useful to help organizing the agents. The rules

presented in Section 13.3.3 (Interaction model and domain model) lead to structure

the hierarchy of agents and define the content of abstraction facets. Then, based on

the rules presented in Section 13.3.3 (Task model and Interaction model), the designer

can identify abstract ports for each presentation facets postponing any decision about

concrete interactions.

As a consequence, the interaction model crystallizes elements from the task models

and the domain models. An explicit relationship can be maintained, which will be very

useful later if we want to adapt dynamically the application.

The next step consists in concretizing the models to a specific context.

Step 3: Models concretization . The purpose of this step is to replace abstract

interactions by concrete interactions. As seen in Section 13.10 (Task and interaction

patterns), the designer should be helped in this task by a librairy of interaction patterns

related to contexts of use. Once a pattern is chosen, the abstract ports are replaced by

concrete ports and administrators. Currently, we have not yet defined heuristics or

selection rules but this will be very helpful for the designer.

Then, these concrete AMF facets are associated to applicative classes (ports are

linked to daemons) that have been implemented from the code generated by the editor

or which respects some programmation rules.

In Section 13.4.2, we will show that several design options can be taken by the

designer to handle the adaptation issue that will impact either implementation or just

the interaction model.

Once the concretization step is fully over, a concrete interaction model description

(XML file) can be produced by the editor.

Step 4: Application Execution. This runtime step, sometimes called final-
ization step, is responsible for instantiating application elements (AMF agents and

instances of applicative classes). In our Java implementation, this happens inside a

specific component called AMF engine. This software component is the heart of an

AMF application and ensures 2 main functions:

Loading the concrete interaction model description files defined in the previ-

ous step and instantiating the referenced objects (AMF objects and applicative

classes).

Controling the interaction behavior of the application processing and routing

messages between methods of applicative classes through AMF objects (ports,

facets, agents and administrators).

The “ concrete ” facets that are the applicative classes (presentation, abstraction and

others) are associated to the AMF engine to provide finalized behaviors. This assem-

bling task is monitored by the AMF engine according to the interaction description

files.

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 293

Here, we do not directly study the question of the layout of the presentation as this

part of the problem is mainly managed by the applicative classes. However, in the next

section, we will give some key answers.

13.4.2 Adaptation Options

After having defined a design process and some building rules, we focus our attention

on the adaptation options available for the designer. These options depend mainly on

the adaptation goals and on the difference between the target contexts. These contexts

are defined by the user, the interaction platform, the environment, and the activity. We

call distance between two contexts of use the set of differences between both contexts.

Even if no metrics are available, this notion is useful to understand when choosing one

option or another.

Today, we have identified four strategies for supporting the adaptation. All of them

can be combined in a real application according to the required level of adaptation.

First of all, when the distance between two contexts is small, that is, when the adap-

tation does not require modifying the structuration of the AMF model, it is common

to support it inside the presentation applicative classes. For instance, when two in-

teraction platforms own the same input capabilities but have small display differences

(e.g., resolution, colors) the adaptation of the size or the layout will not impact the

AMF model. Actually, it supposes that the applicative class manages all the possible

layouts (which is very similar to the Comet approach) or is able to be parametrized by

external description files (see UIDL approaches). In these situations, it is not neces-

sary to modify any connection in the AMF model.

If the target interaction platforms have similar output devices and various input

devices but which support similar interaction techniques, the main infrastructure can

be maintained but dedicated presentation facets will be inserted. These Device facets
interact with the real devices. This is particularly useful with non standard devices

such as digital gauntlet, eye trackers, or RFID readers (Masserey et al., 2005).

These two first strategies are applied in the last steps of the design process as no

significative modifications in the AMF models are required.

When the adaptation implies bigger changes such as another interaction style (e.g.,

drag-drop with a mouse vs. keyboard interaction) it is necessary to use different com-

munication ports and sometimes new control administrators. As seen earlier, interac-

tion patterns can really ease the designer’s task. These patterns can involve one single

agent or a small hierarchy.

In the hardest situation, when the adaptation distance is so high that a deep change

needs to be done, a total restructuration of the AMF model can occur. Of course, the

designer does not need to start from scratch as he can reuse a large part of the interac-

tion model. This kind of adaptation requires making some changes in the second step

of our design process using two kinds of actions:

Filtering tasks that are not achievable in the context (removing abstract tasks in

the tree),

Restructuring interaction environments (grouping differently the remaining

tasks).

www.manaraa.com

294 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

For this last action, the designer can use tasks grouping heuristics proposed by CTTE

(Mori et al., 2002). This way, he can obtain adequate groups of tasks which increase

the usability of the resulting application. Indeed, a PC with a large screen is able

to display in a single interaction workspace a larger number of tasks than a mobile

phone with a small display. Thus, the designer can apply series of grouping steps to

reach a satisfying structuration according to the context characteristics, including non

platform properties such as user’s preferences and abilities.

In the future, we are going to study other techniques to restructure the interaction

workspaces. Particularly, we would like to consider the intermediate tasks (virtual/real

nodes in the tasks tree).

13.5 FUTURE DEVELOPMENTS AND CONCLUSION

In this paper, we presented a model-based approach organized around AMF, a multia-

gent model, to achieve adaptability of interactive software as one of multiple aspects

of usability. Mainly, we have elaborated an environment composed of a model builder

and a runtime engine. These technical tools are associated to a design and implementa-

tion process. This helps integrating into an AMF architecture the various models that

need to be considered to provide a good adaptation to the context of use (platform,

application, and user preferences). Several techniques, mainly based on patterns, can

assist the designer in choosing the ”best” interaction techniques (in a usability per-

spective) and easily implement them.

During the description of the AMF model we did not really develop the interest

of its multifacet characteristic. As mentioned in several other chapters in this book,

usability is not only interaction oriented, but can be concerned by no visible software

objects. With AMF, we can consider presentation, control, and abstraction parts, not

only at a very large grain, but also at a thinner grain, which allows doing a richer

modeling. Indeed, we can collect interesting and reusable behaviors, which can con-

stitute new facets and be reused elsewhere. This way, we allow designers expressing

what they consider as new important aspects of the interactive application by creat-

ing new facets, which would be reused later by themselves or other designers. The

goal of these new facets is also to draw attention during the development process and

mainly during usability studies, i.e., answer time for SQL commands which must re-

spect delay constraints to ensure usability of the application. These new facets can

be of different natures, i.e., presentation, to create several, alternative presentations

for different devices, or different users (mainly in collaborative applications), user’s

profile, to collect information on user’s behavior, presentation preferences, main inter-

actions undertaken and their contexts, in order to be able to determine an appropriate

interaction presentation for the user; undo mechanism, in order to indicate the way

to stop and undo executed commands, and others, which are explained by creation of

new reusable facets. Patterns can be created to express the relation between a new

facet and its activation coming from control expressed by appropriate administrators

in relation with their ports, can also be created and used in other application designs.

From an architectural point of view, these facets can receive during the adaptation

process a particular attention, in order to determine appropriate organizational answer,

i.e., specific location of this facet in client-server architecture, location determined

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 295

by usability requirements as acceptable answer delay. To obtain it, it is possible to

locate the facet at the same place as caller and to connect it directly (by procedure

call), or to locate it elsewhere and use distant procedure call, soliciting middleware

for the call coming from distant facet (see AMF-C; Tarpin-Bernard et al., 1998). This

deployment aspect is studied at implementation stage and still open-ended for use

(execution) phase adaptations.

Connection between user’s actions (interactions) and this new facet and/or between

behavior (functional core) facet and this one is expressed graphically at control level

with appropriate administrator(s). This visual programming of control can be ma-

nipulated by the designer during elaboration process phase as well by the user (in a

simplified view to define) during the use (execution) phase. These functionalities are

not yet fully operational and constitute interesting future developments.

Finally, we are currently working on the integration of AMF builder into Eclipse

environment so that we can enforce the relationships between the AMF model and

other views, mainly UML and the visualization of the interface.

References

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., and Shuster, J. E.

(1999). UIML: An appliance-independent XML user interface language. Computer
Networks, 31(11-16):1695–1708.

Azevedo, P., Merrick, R., and Roberts, D. (2000). OVID to AUIML—user-oriented

interface modeling. In Proceedings of Towards a UML Profile for Interactive Sys-
tems, TUPIS’2000 Workshop.

Bouillon, L., Vanderdonckt, J., and Souchon, N. (2002). Recovering alternative pre-

sentation models of a Web page with VAQUITA. In Kolski, C. and Vanderdonckt,

J., editors, CADUI, Computer-Aided Design of User Interfaces III, Proceedings of
the Fourth International Conference on Computer-Aided Design of User Interfaces,
May 15-17, 2002, Valenciennes, France, pages 311–322. Kluwer.

Calvary, G., Dâassi, O., Coutaz, J., and Demeure, A. (2005). Des widgets aux comets

pour la plasticité des systèmes interactifs. Revue d’Interaction Homme Machine,
Europia, 6(1).

Chikofsky, E. J. and Cross, J. H. (1990). Reverse engineering and design recovery: a

taxonomy. IEEE Software, 7(1):13–17.

Coutaz, J. (1987). PAC: an implementation model for dialog design. In Proceedings
Interact’87, pages 431–436.

Coutaz, J. (1990). Interfaces Homme-Ordinateur, Conception et Réalisation. Paris:

Dunod Informatique.

Dubinko, M., Leigh, L., Klotz, J., Merrick, R., and Raman, T. V. (2003). Xforms 1.0.

Technical report, World Wide Web Consortium.

Florins, M., Trevisan, D. G., and Vanderdonckt, J. (2004). The continuity property in

mixed reality and multiplatform systems: a comparative study. In Jacob, R. J. K.,

Limbourg, Q., and Vanderdonckt, J., editors, CADUI, pages 321–332. Kluwer.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley Professional Computing

Series. http://www.aw.com.

www.manaraa.com

296 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Hyatt, D., Goodger, B., Hickson, I., and Waterson, C. (2001). Xml

user interface language (xul) specification 1.0. w3c recommendation.

http://www.mozilla.org/projects/xul/.

Koskimies, O., Wasmund, M., Wolkerstorfer, P., and Ziegert, T. (2004). Practical expe-

riences with device independent authoring concepts. In Advances on User Interface
Description Languages, Workshop of AVI 2004. Expertise Centre for Digital Media.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model-view con-

troller user interface paradigm in Smalltalk-80. Journal of Object-Oriented Pro-
gram, 1(3):26–49.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez, V. (2005).

UsiXML: a language supporting multipath development of user interfaces. In Proc.
of 9th IFIP Working Conference on Engineering for Human-Computer Interaction
jointly with 11th Int. Workshop on Design, Specification, and Verification of In-
teractive Systems EHCI-DSVIS’2004, volume 3425 of Lecture Notes in Computer
Science, pages 200–220, Springer-Verlag.

Luyten, K. (2004). Dynamic User Interface Generation for Mobile and Embedded
Systems with Model-Based User Interface Development. Ph.D. thesis, Limburgs

Universitair Centrum, School of IT, Expertise Center for Digital Media, Diepen-

beek, Belgium.

Masserey, G., Tran, C. D., Samaan, K., Tarpin-Bernard, F., and David, B. (2005).

Environnement de conception et développement d’applications interactives selon

l’architecture amf. In IHM 2005: Conférence Francophone sur l’Interaction
Homme-Machine, pages 329–330, New York: ACM Press.

Mori, G., Paternò, F., and Santoro, C. (2002). CTTE: support for developing and

analyzing task models for interactive system design. IEEE Trans. Softw. Eng.,
28(8):797–813.

Mori, G., Paternò, F., and Santoro, C. (2004). Design and development of multidevice

user interfaces through multiple logical descriptions. IEEE Trans. Software Eng,

30(8):507–520.

Nigay, L. and Coutaz, J. (1993). A design space for multimodal systems: Concurrent

processing and data fusion. In Ashlund, S., Mullet, K., Henderson, A., Hollnagel,

E., and White, T., editors, Proceedings of the Conference on Human Factors in
computing systems, pages 172–178, New York. ACM Press.

Ouadou, K. (1994). AMF : Un modèle d’architecture multiagents multifacettes pour
Interfaces Homme-Machine et les outils associés. Ph.D. thesis, Ecole Centrale de

Lyon, France.

Paterno, F., Mancini, C., and Meniconi, S. (1997). ConcurTaskTrees: a diagram-

matic notation for specifying task models. In Proceedings of IFIP INTERACT’97:
Human-Computer Interaction, pages 362–369.

Pfaff, G., editor (1985). User Interface Management Systems. Proceedings of the

IFIP/EG Workshop on User Interface Management Systems, Seeheim, FRG, Oct.

1983. Springer-Verlag.

Rouillard, J. (2003). Plastic ML and its toolkit. In Proceedings of the Tenth Interna-
tional Conference on Human-Computer Interaction, volume 4 of Universal Access
in HCI : Inclusive Design in the Information Society, pages 612–616.

www.manaraa.com

ACHIEVING USABILITY OF ADAPTABLE SOFTWARE: THE AMF-BASED APPROACH 297

Samaan, K. and Tarpin-Bernard, F. (2004). The AMF architecture in a multiple user

interface generation process. In Luyten, K., Abrams, M., Vanderdonckt, J., and

Limbourg, Q., editors, Proceedings of the ACM AVI’2004 Workshop on Developing
User Interfaces with XML: Advances on User Interface Description Languages,

pages 71–78.

Seffah, A., Donyaee, M., Kline, R. B., and Padda, H. K. (2006). Usability measure-

ment and metrics: A consolidated model. Software Quality Journal, 14(2):159–178.

Seffah, A., Gulliksen, J., and Desmarais, M. C., editors (2005). Human-Centered Soft-
ware Engineering: Integrating Usability in the Development Process. New York:

Springer-Verlag.

Tarpin-Bernard, F., David, B. T., and Primet, P. (1998). Frameworks and patterns for

synchronous groupware: AMf-C approach. In Chatty, S. and Dewan, P., editors,

EHCI, volume 150 of IFIP Conference Proceedings, pages 225–241. Kluwer.

Thevenin, D. (2001). Adaptation en interaction homme-machine : le cas de la plas-
ticité. Ph.D. thesis, Universite Joseph-Fourier - Grenoble I, France.

UIMS (1992). A metamodel for the runtime architecture of an interactive system: the

UIMS tool developers workshop. SIGCHI Bull., 24(1):32–37.

www.manaraa.com

IV Reengineering, Reverse
Engineering, and Refactoring

www.manaraa.com

14 THE GAINS DESIGN PROCESS:

HOW TO DO STRUCTURED DESIGN OF

USER INTERFACES

IN ANY SOFTWARE ENVIRONMENT
Martha J. Lindeman

Agile Interactions, Inc., 1933 E. Dublin-Granville Road #125, Columbus, OH 43229.

(Published by permission of Agile Interactions, Inc.)

Abstract. This paper describes a user-interaction design process created and used by

a consultant to solve two challenges: (1) how to decrease the need for changes in the

user interface by subsequent system releases without doing big design up-front and

(2) how to apply a structured user-interaction design process no matter when brought

into a project or what software methodology was being used. The four design levels

in the process parallel Beck and Fowler’s four planning levels described in their book

Planning Extreme Programming. The design process is called “GAINS” because the

user-interaction designer has only Attraction, Information and Navigation to connect

users’ Goals with the project sponsors’ criteria for Success. Thus there are five ques-

tions, one for each letter of the acronym GAINS, asked at each of four levels of design:

The first two design levels, Rough Plan and Big Plan, focus on business-process ac-

tions and objects that define users’ goals. The next two levels, Release Planning and

Iteration Planning, focus on the user interface objects that support the tasks necessary

to achieve those goals. Release Planning identifies the displays the user sees for each

goal included in that release, and also the across-display navigation for the proposed

301

www.manaraa.com

302 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

functionality. Iteration Planning focuses at a lower level of interaction, such as the

within-display navigation among controls. For a voice system, the word “sees” would

be changed to “hears,” but the design process and the levels of focus are the same

for user interfaces that are vision output (e.g., GUIs), voice output (e.g., IVRs), or

multimodal.

14.1 THE COSTS OF CHANGING USER INTERFACES

Any introduction of new functionality for users, or any modification of functionality

currently available to users, requires one or more changes to a user interface. Conse-

quently, it is a given that a new system or a new release of an old system will require

users to change some of their mental models and physical behaviors. However, chang-

ing part or all of a user interface often has negative consequences as measured by de-

creases in users’ productivity and satisfaction. Although productivity and satisfaction

could increase after users make the necessary changes, often first reactions become

permanent and the positive effects are never experienced.

The user interface change(s) may seem trivial to developers—such as moving a

button to make room for a new button—but changes in a user interface can cause two

major types of “user costs”:

1. Conceptual changes in a user interface require changes to users’ subconscious

“mental models” of how to interact with the system, which can be very difficult

to change; and

2. Changing interactions that users already have stored in “muscle memory” from

a previous version require making errors to change those behaviors.

In an agile development environment such as eXtreme Programming (XP), the user

interface frequently changes with each release. However, user interface changes occur

in non-agile development environments, just less frequently. For example, Microsoft

made major changes in the user interface of its Office suite with the introduction of

the new Vista interface.

14.1.1 User Costs of Conceptual Change

An “intuitive” user interface is one in which a user can take a current mental model and

immediately apply it to successfully interact with a new system, Web page, etc. The

physical behaviors may be very different but the conceptual model is very similar—

such as filling out a computerized form that previously required writing on paper. The

conceptual model, ‘remember this information and put it there,’ is the same in both

instances.

However, conceptual models are learned during experience and are rarely ex-

pressed. For example, when going to a new doctor’s office, the receptionist simply

says, “Please fill out these forms,” without any detailed instructions. The new patient

is expected to apply the model for filling out forms even when the patient has never

seen those forms.

Similarly, users apply old mental models to new user interfaces without additional

instructions. Only when part of an old model does not apply does it become necessary

www.manaraa.com

THE GAINS DESIGN PROCESS 303

to think about the differences and consciously decide what to do next. The difficulty

of deciding what to do next is what makes a user interface difficult to use—the more

effort required to decide what to do next, the less intuitive the user interface!

From a developers’ perspective, the users’ negative reactions to changes will of-

ten seem out of proportion. On the other hand, from a cognitive-science perspective

the users are correct—people become experts by ‘chunking’ information and building

higher levels of knowledge on the lower-level chunks. Thus changing a single fun-

damental concept can disrupt a user’s entire mental model for how to interact with a

system.

For example, early releases of a system might be built around ‘account’ as a primary

interaction concept. When customer stories are written for a later release, they indicate

(1) there is a many-to-many relationship between accounts and customers, and (2) that

the concept ‘customer’ is more important than the concept ‘account.’ A change in the

user interface design at this conceptual level can cause major havoc in users’ minds

as they attempt to adjust their mental models to a different way of thinking. This

is true even when the new model is like their original way of thinking prior to the

introduction of the first system. What developers may think is a simple reorganization

of user interface widgets may seem like a whole new system to users!

Consequently, the three to seven fundamental concepts that underlie the entire sys-

tem functionality need to be defined at the beginning of the design process, even if

it requires some quick research to discover major issues not addressed by the current

stories. For example, the fundamental concepts can often be identified from one or

more business documents that originally justified the initiation of the project.

14.1.2 User Costs of Logical or Visual Change

Even simple visual changes can have high user costs of change. As a worst-case

scenario, imagine users have been frequently using a Confirm button at a particular

location in a user interface. During the next release, the need to add buttons at that

point causes the Confirm button to be moved 40 pixels to the left and a Delete button

is put in the old location of the Confirm button. Users will now repeatedly click on the

Delete button when they start using the new release.

There is a simple reason for the decrease in users’ productivity because of a seem-

ingly trivial button relocation—any action stored in muscle memory, such as where to

move a cursor for a button, can only be unlearned by making mistakes. To see an easy

example of automated muscle memory, have a Windows R© user move the location

of the taskbar to a different location and watch how many times the cursor is moved

toward the old location before the user learns the taskbar is no longer there.

People automate physical movements for frequent behaviors to save cognitive re-

sources, and doing it is hard-wired into our brains—verbal training does not unlearn

automated actions, which is why expert users have great difficulty with new systems.

Automated actions are typically unlearned through errors.

Consequently, the “user costs” of moving the button are the time and effort it takes

for the user to (a) unlearn the old location, (b) learn the new location, and (c) cor-

rect any errors resulting from the old habits. Depending on the results of the errors,

user costs for the physical relocation of one button can be very high, and user costs

www.manaraa.com

304 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

can rapidly increase as changes are larger. The time and effort taken to change the

automated behavior is a function of how long and frequently the behavior is done.

The GAINS approach to user-interaction/interface design was created during 15

years of UI consulting as a way to help decrease users’ costs of change while not

impacting the project schedule. The project starting point for the use of GAINS has

ranged from early project initiation to shortly before a product was to be delivered, and

about every possible point in between those two extremes. The software engineering

methodology contexts for the projects where GAINS has been applied have ranged

from formal methodologies enforced in detail to almost no methodology at all.

14.2 OVERVIEW OF THE GAINS PROCESS

The GAINS process for user interface design, which parallels the XP planning pro-

cess, has been used for more than 15 years in successful consulting projects for small

and large systems in many different content domains. It has been used for many

types of hardware, software platforms, and development methodologies. Applying

this process for agile user-interaction/interface design may accomplish two goals for

the developer/designer: (1) increase system usability, and (2) decrease project risk.

A bulletin-board system is used in the remainder of this paper to briefly explain the

GAINS design process.

GAINS is an acronym that captures the following statement:

“The user interface designer has only Attraction, Information and Navigation to

connect users’ Goals with sponsors’ criteria for Success.”

There is nothing else, and they typically occur in that sequence. Users are attracted

to a specific part of a user interface, find information in that location, and then navigate

to another location to repeat the sequence.

GAINS can also be expressed as the following five questions that should be an-

swered for any point in an interaction or for any part of a user interface:

G What is the other person’s (e.g., user’s) goal?

A What will attract the person?

I What information does the person want or need?

N What determines the person’s next action?

S How do you (or the project sponsors) define success?

These questions apply to any type of interaction, whether person-to-person or

person-to-machine.

When GAINS is applied to user interface design, the questions are asked and an-

swered in four levels of design: Architecture, Goals, Tasks and Aesthetics. Separating

the design process into these four levels does two things. First, it ‘clears out the under-

brush’ so that the designer can concentrate on only what is important at each level and

thus get usability feedback much faster at each level of design. In that sense GAINS

is a top-down approach. Second, it is easy to identify the appropriate level for relevant

information gathered from any source at any time. Thus design can run bottom-up

www.manaraa.com

THE GAINS DESIGN PROCESS 305

and/or middle-out when that type of information is first available. As a consultant,

a good UI designer needs to be able to start from any point in a project and work in

whatever direction is most efficient and effective for that particular project.

The parallels between the four design levels of the GAINS process and the eXtreme

Programming (XP) planning process are shown in Figure 14.1. These are explained in

more detail in the following sections of this paper.

Figure 14.1 Users’ goals and roles for the bulletin-board example

There are two higher levels of GAINS design not discussed in this paper: the Or-

ganizational level, which focuses on an enterprise-wide view of user interfaces, and

the Project level, which applies the enterprise-wide view to a specific project. These

two levels define user-interaction design management, and the decisions made at those

levels strongly impact what may or may not happen at the four design levels shown in

Figure 14.1. However, those two levels are outside the scope of this paper and will be

discussed in a forthcoming book on the GAINS design process.

14.3 OVERVIEW OF XP’S PLANNING LEVELS

In Planning Extreme Programming, Beck and Fowler (2001) describe project plan-

ning at four levels: (1) a “rough plan,” (2) a “big plan,” (3) “release plans,” and (4)

“iteration plans.” Although the first two may be treated as one, the Rough Plan and

Big Plan have been described separately to clearly distinguish how to apply them to

user-interaction/interface design. The largest return on investment typically occurs at

these higher levels. In most cases, all of the planning prior to release planning takes

only a few hours or days. The determining factors will be the complexity of the sys-

tem, how well the customer knows what she or he wants, and whether there is truly

only one customer voice.

www.manaraa.com

306 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Each XP planning level addresses a single question:

Planning Level Question (based on Beck and Fowler)
Rough Plan: Will this system make sense to its users?

Big Plan: Should additional money be invested?

Release Planning: How will project be synchronized with the business?

Iteration Planning: What development tasks are to be done by whom?
For user interactions, the Rough Plan and Big Plan focus on the few most-important

business-process objects and actions involved in users’ goals. The user-interaction

Rough Plan consists of a very few ‘Statements of Purpose’ that identify the funda-

mental conceptual objects that encompasses all of the system functionality. This al-

lows evaluation of ideas about how many user interfaces will be required and how

they may relate to each other. Also, creating the small set of Statements of Purpose

for each user interface rapidly determines (1) whether the system makes sense from a

user’s perspective, (2) whether the customer has a coherent overview of the system in

mind, and (3) how many major user groups will use the system.

At the second planning level, the Big Plan expands the Statements of Purpose into

a list and map of users’ primary goals. These should take less than a week to produce,

and sometimes a lot less. If the team is working with well-defined and documented

business processes, the Big Plan for the user interface(s) might be done in a day.

For agile projects that start with only a few stories, it might take one or two days of

interviews to gather the information, or the information might be quickly found in the

business documents that initiated the project.

The two iterative levels of project planning are Release Planning and Iteration Plan-

ning, and both focus on the user interface “widgets” that support the users’ tasks. The

first Release Plan focuses on two things: (1) the first primary display for each user

interface, and (2) the across-display navigation for the first release. Later Release

Plans integrate new primary displays into the navigation map for the existing displays.

Iteration Planning focuses on secondary displays and within-display navigation.

14.3.1 Rough Plan

The first question that must be answered for any interactive system is, “Will this sys-

tem make sense to its users?” This is true for all technologies, all types of systems,

and all development methodologies. Someone, somewhere, needs to have a single co-

herent view of the system as it will be presented to the users. As Tom Poppendieck

(personal communication, January 4, 2003) expressed it, someone needs to under-

stand “the external conceptual integrity of the whole product.” If a system has a user

interface with low usability, users will look for other ways to achieve their goals, even

when the system uses the best technology or has the best functionality. Thus techni-

cally better systems may fail in the marketplace while mediocre systems with a better

user interface may succeed.

The highest level of planning, the “Rough Plan,” allows the project team to quickly

create a coherent overview for interaction design. At this level, the project team creates

a set of three to seven “Statements of Purpose” for the system as a whole. Multiple

sets of Statements of Purpose are appropriate if, and only if, the system has multiple

complex user interfaces. For one set of Statements of Purpose, it is usually better to

www.manaraa.com

THE GAINS DESIGN PROCESS 307

try to limit the project to five or fewer Statements—difficulty in creating a good set

of Statements of Purpose is an early warning of major difficulties that can cause the

project to fail.

A bulletin-board system will be used as the example for the rest of this paper. Each

completed Statement of Purpose defines one or more fundamental user goals (e.g.,

manage bulletin board), the associated user profile or profiles (e.g., system adminis-

trator), and when, where and how the users will be able to access the system to work

on that goal (e.g., through the Internet). Thus one Statement of Purpose for a bulletin-

board system might be, “The system administrator will use a control panel to manage

all aspects of the bulletin board at any time and from anywhere s/he can use a Web

browser supported by the system.”

If all of the information for a Statement of Purpose is not known, then the designer

starts by identifying the users’ goal for a statement and later expands from that. It

is also important to define the user characteristics, particularly if they are controver-

sial. Differences in user characteristics can significantly change how the user interface

would be designed to achieve greater usability.

Creating a set of “Statements of Purpose” for a system can be done in a few hours

if a project makes sense and the information is available. Starting with whatever in-

formation is known, first define a set of fundamental “user concepts.” They are called

“user concepts” because they may not exist as physical objects in the system. For

example, in a customer-service system for a utility company, the developers chose to

recreate a customer’s “bill” each time it was requested by doing joins in the database.

Thus the monthly bills for a customer were not permanent objects in the database, but

“bill” was a fundamental object in the users’ mental models.

Often the fundamental concepts can be identified from the information used to jus-

tify the initial project budget or in contracts used to hire consultants. However, when

drafting the list of fundamental concepts, make sure to include often initially forgotten

user groups such as system administrators and maintenance technicians. Then shorten

the list to the fewest concepts with good usability that cover all of the planned func-

tionality of the system.

If there are more than five or perhaps six fundamental concepts in the first list,

search for ways to simplify them—particularly for ways they can be made easier to

learn and use. Also consider whether the fundamental set defines multiple user inter-

faces for the same system. For example, some concepts may be fundamental for the

system administrator (e.g., “user”) and others fundamental for end-users (e.g., “cus-

tomer”). Then, in essence, you design two different interfaces, and link them together

appropriately for the system administrator.

The words chosen for fundamental concepts can make a major difference in us-

ability design! For example, the design of the most important primary display for a

call-center GUI will significantly differ if the concept “call,” “account,” “customer,”

“stakeholder” or “service” is considered most important.

Also, the highest-level of planning is when to work out relationships among the

proposed fundamental concepts—for a GUI, the opening display for each user inter-

face ultimately will have to integrate all of the system functionality appropriate for

its users. For a voice-response system, all of the functionality will have to be ac-

www.manaraa.com

308 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

cessed through a single menu (keypad input) or top-level vocabulary (voice input).

Thus for any interactive system, all navigational paths start with a user’s first primary

display/presentation and then go to whatever depth (number of choices) necessary to

complete a task. If it is difficult to define a single list of fundamental concepts, think

how interesting it will be to integrate the access points for all navigational paths in-

cluded in the one top-level display or voice menu!

After identifying each of the fundamental concepts, expand each one into its “State-

ment of Purpose” by identifying the user profiles, actions and constraints for that con-

cept (if they are known). For example, one statement of purpose for a customer-service

system could be “Any authorized user will be able to manage appropriate accounts us-

ing any Web browser supported by the system.”

1. The words “Any authorized user” identifies the ‘who’ for that statement of pur-

pose.

2. The interactive verb “manage” will later expand to any defined user action such

as access, create, read, edit, delete, print, etc., that will be supported for the

concept.

3. The fundamental concept “appropriate accounts” identifies the ‘what.’

4. The words “any Web browser” identify the ‘means of access.’

The process of creating the set of Statements of Purpose often reveals that the customer

is speaking with many voices rather than just one. This needs to be discovered at

the beginning of a project rather than when a release causes controversy within the

customer’s organization. Past projects have revealed that even customers that have

spent millions on business-process redesign may not have created a single coherent

overview of why the system is being built. But without that coherent overview, either

pure luck or genius-level skill will be needed to pull the functionality of a large system

together into a user interface with high usability.

Creating Statements of Purpose also often reveals (a) how many user interfaces

must be provided for user access, and (b) how various user access-points relate to

each other. For example, in a print-shop control system there may be one user interface

for shift supervisors and a different user interface for operators. Understanding this

early in a project can help developers determine whether stories that appear to be

independent actually interact strongly in the user interface. Then the team can plan, or

choose not to plan, appropriately.

The set of Statements of Purpose for a bulletin-board system might be the following

three statements:

1. All identified users will be able to browse forums, start threads, and manage

their posts at any time and from anywhere they can use a Web browser supported

by the system.

2. All unknown users may browse forums open to them at any time and from any-

where they can use a Web browser supported by the system.

www.manaraa.com

THE GAINS DESIGN PROCESS 309

3. The system administrator will use a control panel to manage all aspects of the

bulletin board at any time and from anywhere s/he can use a Web browser sup-

ported by the system.

Note that these three simple statements have identified the following requirements:

(a) three types of user profiles or status states, (b) the four fundamental goals of non-

administrator users, (c) that not all Web browsers will be supported, and (d) that two

separate user interfaces will be needed. The first display after a user logs in as a

system administrator would contain the application control panel. The first display for

another user would contain the list of available forums. These two first displays are

so different that they need to be considered as two different user interfaces that must

integrated together. In this case the integration is as simple as putting a link to the

forums-page on the control-panel page. In other types of systems the integration may

be much more complicated and thus require more effort to design.

When the team agrees on the Statements of Purpose, then it becomes obvious that

the system “makes sense.” At that time the question for the Rough Planning level

is answered. Until that happens, it has not been clarified (1) that the customer speaks

with only one voice, and (2) that the ‘voice’ knows at the highest-level what the system

is to provide to its users. From experience, these issues must be resolved at this level

or the project has a high risk of severe problems and perhaps even failure. It is well

worth the few days (or hours) necessary to complete the Rough Plan!

14.3.2 Big Plan

The second level of XP planning is Big Plan, which asks the question, “Should ad-

ditional money be invested?” For user-interaction design, at this level the team iden-

tifies the users’ primary goals. These can be expanded and used to assess the user-

interaction risks of assigning features to particular release dates, developers, etc.

For the Big Plan, the concepts and actions in the Statements of Purpose are ex-

panded into a list of users’ primary goals and a map showing how the goals relate to

each other. Although this often cannot be done as quickly as the Statements of Pur-

pose (assuming the team agreed on them), the list and map should take less than a

week to produce. If the team is working with well-defined and documented business

processes, the list of users’ primary goals might be done in a few hours.

When the interaction design is being done within an agile methodology, there may

be less pressure to get the list and map exactly right than there is within more tradi-

tional methodologies. However, having a more complete and accurate primary-goals

list and map very early in the project decreases project risk because it decreases the

probability of large changes to the organization of the user interface when it is tested

by users or for later releases.

For the bulletin-board example, the three Statements of Purpose identify the list of

user goals and roles shown in Table 14.1. That list is then expanded in Table 14.2 so

that each row, when read from left to right, states one primary user goal for the user

group identified in the first column. Thus, Table 14.2 identifies the first-draft set of

primary goals for all users. (Note: Excel is an excellent tool for doing these types of

www.manaraa.com

310 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 14.1 List of users’ goals and roles identified in the Statements of Purpose

Users’ Goals User Role(s)
Action Concept
Browse Forums Registered Users, Guests

Start Thread Registered Users

Manage Posts Registered Users

Manage Board System Administrator

lists. The functionality in Word tables is not as adequate for the sorting of rows needed

to design complex systems.)

Table 14.2 First-draft set of primary goals for all users of the bulletin-board system

Primary User Role(s) Action Concept
Registered Users, Guests Browse Forums

Registered Users Start Thread

Registered Users Manage Post(s)

System Administrator Manage Board

System Administrator Manage Users

System Administrator Manage Categories

System Administrator Manage Forums

System Administrator Manage Threads

System Administrator Manage Environment

This first-draft list of users and their primary goals covers every user’s goal that

the system functionality will support. The concept “board” has been associated with

the concepts “users” and “categories” (groups of forums), two concepts that were not

included in the Statements of Purpose. [Note: Identifying the users of a system is

not the same as including them in the system as objects to be manipulated by the

system administrator!] The system “environment” of the board has also been included

because, for example, the board may require specific releases of PHP and MySQL to

be loaded on the server. Thus managing the environment is a user-interaction goal to

be considered by the designer even when it is not included in any user interface of the

application.

The dependency map for this set of primary goals is simple and can be expressed

in words rather than pictures:

The board must be installed within an appropriate supporting environment before

creating any forums or categories of forums. Forums must be created prior to threads,

www.manaraa.com

THE GAINS DESIGN PROCESS 311

and threads are created by the first post with a new subject. End-users may be regis-

tered as soon as the control panel is operational.

In a more complex system, the dependency map can be done with post-it notes on

a wall or with informal drawings. The key is to determine the sequence and depen-

dencies among the primary user goals. For example, a window for the administrator’s

control panel is necessary to support the first user interaction that occurs after the ap-

plication is installed. Thus the control-panel display and some of the user tasks it

supports would be planned for the first release to be used by users. In an agile devel-

opment environment, other user tasks to be supported by the panel could be identified

and their implementation deferred until a later release.

When the team agrees on the draft list and dependency map of users’ goals, it is

time to begin release planning. The list and dependency map of users’ primary goals

puts a ‘stake in the sand’ that, although it can be moved, provides a base for later

defining the details of the user-interaction features to be included in each release. To

this point, the team has been able to “travel light” while taking about a week to obtain

a conceptual overview of interaction design that can be very useful for release and

iteration planning.

14.3.3 Release Planning

The third level of XP planning is Release Planning, which asks the question, “How

do we synchronize the project with the business?” For user-interaction design, at

this level the team plans across-display navigation flows so that the project is less

susceptible to high user costs for later changes. Continuing the bulletin-board exam-

ple, the primary concepts identified in the Big Plan would be expanded to include

all the users’ goals relevant to the first release and a few later releases. For exam-

ple, “managing users” for the administrator’s control panel would be expanded to

include the user goals of “adding/finding/deleting/. . . user”, “editing user profile,”

“adding/modifying/removing avatars,” etc. The first two of these goals might be in-

cluded in the first release, and “adding/modifying/removing avatars” deferred until

later. Beck and Fowler recommend making 3–4 month release plans (p. 128), and

these could be used to store deferred items.

Other user goals under “managing users,” such as “adding/modifying/removing

user title” and “adding/modifying/removing a user-profile field,” might not be defined

at this time unless they were specifically included in a customer story. Other possible

user goals, such as “create user profile,” might be discussed and resolved. For example,

“create user profile” might become a system action that creates a default profile as soon

as a user becomes a registered user.

Notice that a new concept, “user profile,” was introduced in the expansion of “man-

age users” for the first release. The question would arise whether users could edit their

own profiles. This is the kind of dynamic change that can be difficult to handle in

traditional methodologies but easy to incorporate when using the XP methodology.

New user types of profiles may also be introduced. For example, if the individual

forums are moderated, then “moderators” is a type of user group. A board might even

have a “super moderator” who can moderate all forums on the bulletin board. New

user states might be defined so that a user is always in one of the following states when

www.manaraa.com

312 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

visiting the board: unregistered, awaiting email confirmation, not logged in, awaiting

validation, or registered. Again the customer may not define these changes until the

team is well into the development process.

Many kinds of changes frequently occur when defining interaction requirements

because users rarely know what they really want until they experience it. There are

three mutually exclusive ways software-development projects attempt to handle these

kinds of changes:

1. Completely design the physical user interface before beginning to code.

2. Completely define all conceptual and logical user interactions before beginning

to code.

3. Use an interaction process that is flexible enough to change while also (a) de-

creasing the risk of significant rework for the team and (b) decreasing the num-

ber of user interface changes that have significant user costs.

The first alternative was successfully used to design and prototype a system in the

United States and then the prototype was sent overseas as part of the requirements for

system coding. The second alternative is when a project calls for completion of a big

up-front design before handing the requirements off to developers for coding.

The third alternative is provided by the XP development methodology when it is

integrated with user-interaction design as described in this paper. The Statements of

Purpose, list of users’ primary goals and goal-dependency map provide a top-down

overview. This can be very practical when compared to the bottom-up approach in

which there is no interaction design other than choosing and placing user interface

widgets while writing code.

It is useful to define the first display for each user interface because there is a limited

amount of display space. Thus it can be difficult to assure that everything for a planned

first-display will fit on a single screen. If goals and/or tasks planned for the opening

display have to be split into multiple displays, the effects may flow throughout the

entire user interface. For example, the need to create one or more new displays for an

interaction may necessitate redesign of other related interactions.

In Release Planning, primary windows are associated with the users’ primary goals

and the expected navigational flow is mapped for the primary windows. It is best if all

the primary goals can be mapped so that (1) the consequences of release assignments

can be considered, and (2) the team can get feedback on whether the task flow for a

release makes sense to users.

After Release Planning, the focus should switch from navigating across displays

to selection and placement of content (controls, text, links, etc.) within the displays.

In this approach, that change of focus indicates a change from Release Planning to

Iteration Planning.

14.3.4 Iteration Planning

Iterative planning addresses the user-interaction design question, “What are the details

of how users do the tasks?” During “Iteration Planning,” user interface controls are

www.manaraa.com

THE GAINS DESIGN PROCESS 313

selected and placed on user interface displays. This is the most visible level of in-

teraction design, called the “physical design” of the user interface. If no interaction

design has been done before this point, developers may have little other than their own

experience to guide the choice of a widget and its placement. Then when usability

issues show up in the implemented system, it is much more painful than addressing

usability issues earlier in the development process. This is particularly true if no one

is coordinating widget appearance and behavior to maintain consistency across the

displays.

Much could be written about how to select user interface widgets and place them

appropriately, but this is not the place to do that. For example, in the Microsoft R© Win-

dows visual guidelines for the Vista operating system, there are 18 widgets described

as common controls in user interfaces (Microsoft, 2007). Of these, ten can be used to

select from a set of alternatives (check boxes, radio buttons, drop-down combo boxes,

sliders, spin controls, etc.). It is not enough to know the user has to select among a set

of alternatives; it is important to consider, for example, the size of the set, whether the

set is dynamic or fixed, whether all of the options are binary and/or mutually exclusive,

etc.

14.4 EVALUATIONS OF USABILITY

Usability “testing” done near the time of system release to the customer is important

as part of customer acceptance, but it is the least useful of the many different ways of

doing usability evaluations. Because the perceptual presentation of the user interface

is complete at that point, users often focus only on physical-design issues. For exam-

ple, users may focus so strongly on colors and widget choices that no one notices an

optional step was left out of a task flow.

The GAINS design process embeds usability evaluations throughout the develop-

ment process, especially when novice and expert end-users are available. For example,

if the users cannot agree on the specific terms for fundamental concepts or on a small

set of Statements of Purpose, the concepts or statements do not have good usability.

Similarly, if users cannot agree on a set of primary goals and/or the dependencies

among them, the usability of the entire system is in question. The stronger the dis-

agreements, the more probable it is that the entire development project will fail. Thus

usability issues provide an early warning detection of problems that normally surface

much later in the development lifecycle.

It also is important to distinguish between verifying and validating a user interface.

To verify a user interface is to evaluate whether the developers correctly instantiated

their conceptual model of the users’ tasks. For example, a quality-assurance person

might compare the user interface to the system specifications (or customer stories) to

verify they are accurately represented. This is often the focus of acceptance testing.

In contrast, validating a user interface is to have end-users interact with a repre-

sentation of the system to test its usability for the real-time work environment. The

representation may be a low-fidelity prototype, such as paper-and-pencil drawings, or

a high-fidelity prototype, such as a partially functional implementation. Using low-

fidelity prototypes to validate usability can save developers hours or even days of time

by preventing rework. This is particularly true when customers have failed to report

www.manaraa.com

314 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

steps in a work process, usually because the experts providing the stories have forgot-

ten to include common muscle-memory actions.

14.5 DIFFICULTIES WITH TWO XP ASSUMPTIONS

The XP methodology includes two assumptions that may be hard to keep valid for

user interface design, particularly for large systems. The first assumption is that cus-

tomer stories should be independent; the second assumption is that the cost of change

remains relatively flat during the entire development cycle.

In XP, the customer writes “stories” that identify the features to be included in the

system. It is a basic tenet of XP that the stories should be independent in the code.

However, stories that are independent in the code may interact in a user’s mind, partic-

ularly when they are used close together or they are similar in some way; independent

stories from a developer’s perspective may be very interdependent from a user’s per-

spective.

Also, a system’s features must be integrated into a coherent whole at the user in-

terface if the system is to be highly usable. If not, user interactions with the system

will feel piecemeal, unpredictable, and perhaps even chaotic. This greatly increases

the risk that end-users will reject the system, especially when someone who will not

actually use the system does the customer acceptance tests.

The other XP assumption that may be difficult to apply to user interface design is

that the cost of change does not greatly increase later in the development cycle. While

this may be true for changes that only impact how the code is processed by a computer,

it is definitely not true for the user interface. With each subsequent release, users form

more complete and automated models of how to interact with the system. As time

passes, those models become more difficult to change. Thus, the same change to the

user interface will have different users costs of change when it occurs early or late in

the overall development cycle.

14.6 CONCLUSIONS

GAINS can be, and has been, successfully used in a wide variety of project and soft-

ware development environments. Even when a user-interaction/interface consultant is

called into a project late in the development lifecycle, it is typically easy to quickly

establish the design context of the previous planning levels. In fact, the ease or dif-

ficulty of doing so is an excellent indicator of how well the project team understands

what they have been asked to build. Thus the designer can often within hours discover

hidden issues that are being ignored or deliberately not resolved because of the diffi-

culty in addressing them. It is much better to identify those issues when first starting

a project than finding them later.

Interaction design in general and the GAINS process in particular are appropriate

for XP projects because it fits into the four levels of planning defined by Beck and

Fowler. The Rough Plan and the Big Plan take a very short period of time and can

successfully replace big up-front design. Release Planning involves primary display

definition and mapping, and Iteration Planning involves secondary displays and selec-

tion and placement of the internal content of displays.

www.manaraa.com

THE GAINS DESIGN PROCESS 315

References

Beck, K. and Fowler, M. (2001). Planning Extreme Programming. Reading, MA:

Addison-Wesley.

Microsoft Corporation (2007). Windows Vista user experience guidelines. Retrieved

July 19, 2007, from http://msdn2.microsoft.com/en-us/library/
aa511456.aspx.

www.manaraa.com

15 LEGACY SYSTEMS

INTERACTION REENGINEERING
Mohammad El-Ramly 1,2, Eleni Stroulia3, and Hani Samir

1Faculty of Computer Science and Information, Cairo University

5 Ahmed Zwail St., Orman, Giza, EGYPT
2Department of Computer Science, University of Leicester

University Road, Leicester, LE17RH, UK
3Department of Computer Science, University of Alberta

2-21 Athabasca Hall, Edmonton, Canada T6G 2E8

{mer14@le.ac.uk, stroulia@cs.ualberta.ca, hanirr@yahoo.com}

Abstract. We present a lightweight approach for reengineering the human computer

interaction (HCI) and/or interaction with other software systems. While interaction

reengineering can be achieved by changing the source code and design (e.g., library

replacement, refactoring, etc.) resulting in a different user interface (UI), we limit

the discussion to interaction reengineering methods that do not involve changing the

source code or internal design of the system. Instead, we focus on methods and tech-

niques for wrapping and packaging the existing interaction layer to reproduce it in a

different format, e.g., on a different platform or to integrate the legacy system services

in another application possibly under a different architecture paradigm, e.g., service-

oriented architectures (SOA).

317

www.manaraa.com

318 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

15.1 INTRODUCTION

In this chapter we present a lightweight approach for reengineering software systems

that we call interaction-reengineering. As the name suggests, interaction reengineer-

ing is concerned with reengineering the way the users interact with a software sys-

tem, i.e., reengineering the human computer interaction (HCI) and/or interaction with

other software systems. While this can occur by changing the source code and design

(e.g., library replacement, refactoring, etc.) resulting in a different user interface (UI),

we limit the discussion here to interaction reengineering methods that do not involve

changing the source code or internal design of the system. So, interaction reengi-

neering is concerned with methods and techniques for wrapping and packaging the

existing interaction layer to reproduce it in a different format, e.g., on a different plat-

form or to integrate the legacy system services in another application possibly under

a different architecture paradigm, e.g., service-oriented architectures (SOA). We use

the term interaction layer instead of presentation layer because (1) interaction layer is

not limited to the user interface but may include other sublayers like Data Description

Specifications (DDS) source files for iSeries systems, for example and (2) interaction

here is not limited to human-accessible interaction layer but it also includes interaction

with other software systems. For example, it is possible to reengineer the way an ap-

plication can be interacted with by other applications in order to integrate it with other

applications on a different platform, e.g., Web services. The key points in interaction

reengineering are (1) the access point of the legacy system is its interaction layer, (2)

no code or design alteration or transformation takes place, and (3) the why the users

and other systems interact with the legacy system will be reengineered somehow. In

other words, the old legacy presentation is not going to be accessed as is on the target

platform (e.g., using emulation), but it will be optimized, remodeled, reengineered,

etc. to a small or large extent.

Interaction reengineering was successfully applied in a number of areas, e.g.,

reengineering character-based user interfaces (CUI) to websites and mobile platforms

(Stroulia et al., 2003; Stroulia et al., 2002), reengineering websites to Web services

(Jiang and Stroulia, 2004) and reengineering form-based CUI applications to Web ser-

vices (Canfora et al., 2006). These applications are discussed in Section 15.4.

In this chapter, we consolidate the various works done under interaction reengi-

neering into a bigger framework that draws a generic methodology for interaction

reengineering, which can be applied to various current and future instances of the

problem. This chapter starts with an introduction to the topic, followed by a section

on the motivation for interaction reengineering. Sections 15.3 and 15.4 describe a

generic methodology for interaction reengineering and some specific instances of this

approach as developed in different research projects. Section 15.5 briefly presents

some industrial tools for interaction reengineering. Section 15.6 concludes by a dis-

cussion of the limitations and advantages of interaction reengineering.

15.2 MOTIVATION FOR INTERACTION ENGINEERS

Over years of development and investment, business software systems, such as bank

finance systems, customer-relationship management (CRM) systems, and airline-

www.manaraa.com

LEGACY SYSTEMS INTERACTION REENGINEERING 319

reservation systems, grew in size and value. They constitute one of the most important

assets for many companies (Liu et al., 1994). Corporations have invested substantially

in developing these mainframe-based legacy systems and making them Y2K and Euro

compliant (Sneed, 2000). In return, mainframe-based legacy systems have proven re-

liability and scalability in providing business-critical processing needs, especially for

applications involving huge numbers of transactions and simultaneous users like bank-

ing and airline-reservation applications. Moreover, many of the business processes and

policies of companies are encapsulated in the logic of legacy systems. For many cor-

porations, legacy systems will remain their Information Technology (IT) backbone for

years to come.

While the term legacy system may invoke the image of a 25 years old applica-

tion running on a mainframe system, it actually applies to a wide variety of systems.

The same argument above now applies to large websites that were built over years

of development and investment and became vital to the business of their owners, but

yet have to keep up with new technologies. So, every new generation of software

technology almost turns the applications developed with the previous generation into

legacy systems. For example, the invention and widespread of object-oriented (OO)

software development paradigm initiated the development of methods for reengineer-

ing programs written in Cobol, C, etc. to modern OO languages (Mossienko, 2003).

Also, the invention of the Web led to developing methods for reengineering existing

software systems for Web accessibility (Sneed, 2000). The wide spread use of PDA

devices created a demand for opening existing systems, particularly Web systems, to

PDA-access (Canfora et al., 2006). Distributed objects technology and later compo-

nents and frameworks technology created a need to reengineer or wrap existing legacy

systems as objects or components (Comella-Dorda et al., 2000; Zou and Kontogian-

nis, 1999). And so on and so forth. This situation led to a continuous evolution and

development of reengineering methods by academia and industry.

Broadly speaking, reengineering techniques can be classified into two categories:

invasive reengineering techniques and non-invasive reengineering techniques. The

first includes techniques that involve significant modification and alteration to the sys-

tem code, e.g., program transformation, refactoring, database reengineering, etc. The

second includes techniques that interface with the existing system via one of its layers

(data, logic, and interaction) without changing or altering the internals of this layer,

e.g., wrapping and interaction reengineering.

While many of these activities require program understanding (code, design, etc.),

interaction reengineering primarily requires an understanding of how the users (or

other systems) currently interact with the system. In this regard, it is a black box

reengineering approach. Work in this area is relatively recent and was pioneered by

the CelLEST project at the Department of Computer Science, University of Alberta,

Canada.

15.3 GENERIC METHODOLOGY

While invasive reengineering technology has matured over time and found its way

to industry through heavyweight scalable reengineering artillery, e.g., DMS (Baxter

et al., 2004), it is not suitable for all situations. In many cases, it is not possible

www.manaraa.com

320 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

to use invasive reengineering approaches, leaving no choice other than interaction

reengineering approaches. Three perfect examples of such situations are listed below:

There is no access to the source code, e.g., because it is lost or because it is

developed by a third party and there is no license to use it. For example, a

government department has a contract management system for managing con-

tracts and contractor relations and they also have access to a central government

system for contract management that includes the general rules that they have

to adhere to. This resulted in some duplication of data entry and difficulty in

managing one task on two separate systems. It was required to integrate both

systems and reengineer their interaction layers, but this was only possible us-

ing interaction reengineering due to the limited access they had to the central

system.

It is required to integrate the interaction layer of existing applications together

in a mega application (Grechanik et al., 2002) or within a newly developed

system, while it is also required to keep the original applications running with

no alteration. This can happen due to mergers or acquisitions.

It is required to open the system for access via a different platform, e.g., the

Web, mobile devices, or SOA. (Berman and Bregar, 2001)

In these cases, the assumption is that it is required to continue to use the legacy sys-

tem(s) as is on the original platform without altering the structure or code, either be-

cause its performance is adequate and/or because it is too risky, expensive, and/or

impossible to change it. In other words, the legacy system is under control and ex-

hibits satisfactory performance but its main weakness is its interaction layer and its

inability to be integrated with other systems. This usually occurs due to the legacy in-

teraction layer falling short in one or more of these three areas: user access, usability,

and navigation (Berman and Bregar, 2001):

1. User Access. The existing system access methods are inadequate. For example,

the system is a legacy mainframe system with a character-based user interface

and it is now required to open some of its services for public access via the Web.

Or the system is a web-based one but the market now demands accessing it as

well via mobile devices or repackaging it in the form of Web services.

2. Usability. For example, legacy CUIs are non-intuitive and hard to learn. The

old-looking “dumb” terminals, e.g., IBM 3270 and VT series, were quite ade-

quate for their time in spite of being quite limited in their display capabilities.

Their CUIs dissatisfy today’s users, who are used to graphical user interfaces

and Web interfaces. Additionally, the learning curve of new users is slow and

the training costs are high.

3. Navigation. The mode of navigation varies from one platform to another. And

with the advent of new platforms, the way an older system is navigated becomes

legacy for the new platform. And the old workflows become outdated and time-

consuming. For example, due to their limited presentation capabilities, legacy

www.manaraa.com

LEGACY SYSTEMS INTERACTION REENGINEERING 321

CUIs offer tedious navigation patterns to accomplish user tasks. For example,

flipping a multipage report may require using function keys or issuing some

commands to move forward and backward between the many screens containing

the report. Instead, in a GUI environment, a scroll bar enables instant access to

any page of the report with a mouse click. The same applies to Web applications,

if we look at them from a mobile perspective.

4. A Methodology for Interaction Reengineering

In this section we present a methodology for interaction reengineering. This methodol-

ogy generalizes the different existing interaction reengineering methods and captures

their commonalities, while hiding their implementation and technology details. This

methodology can be summarized in the following steps which are detailed afterwards.

1. Step One: Modeling the legacy interaction layer.

2. Step Two: Modeling the services (user tasks) to be reengineered.

3. Step Three: Developing (buying) middleware for deriving (interacting with)

the legacy system.

4. Step Four: Reengineering the service models produced in step 2.

5. Step Five: Generating a new interaction layer.

Figure 15.1 shows this methodology in a schematic diagram along with the artifacts

produced. Note that the words model, modeling and reverse engineering in the steps

above are used in a very broad sense, i.e., without reference to specific models or

modeling techniques. These details are left to the next section and are specific to each

instantiation of the methodology.

1. Modeling the legacy interaction layer. In this step, it is required to build a model

of the legacy user interface. This can be done manually, automatically, or semi-

automatically using reverse engineering techniques. Primarily, this model describes

the different units of the interface and the necessary action required to move from one

unit to another. You can think of this model as a state-transition model. A state rep-

resents a screen, a window, a form or whatever units the user interface consists of. A

transition from one state to another is related to some event or user action, e.g., menu

selection, button pressing, text typing, hyperlink selection, or whatever user actions

are available in the source platform. The attributes of a state and the richness of its

description are dependent on the platform under study. The same applies to transitions.

2. Modeling the services (user tasks) to be reengineered. In this step, models of the

legacy system services are built. Legacy system services and user tasks are two faces

of one coin. A task from a user’s point of view is a service that the system offers.

So, we will be using both terms interchangeably. In interaction reengineering, it is

possible to reengineer only specific services of interest. Hence, not all services need

to be modeled. Modeling a user task means defining the task in terms of the states

and transitions involved and the specifications of the data to be inputted and outputted.

Modeling can occur manually, i.e., by someone who defines these ingredients by hand

www.manaraa.com

322 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 15.1 A general methodology for interaction reengineering

based on experience or using system documentation and use case models. Or, it can be

done semi-manually by observing or recording users’ behavior and then using pattern

mining methods to infer some draft models of what the users do with the system.

Then, these models can be completed and verified manually

3. Developing (buying) middleware for deriving (interacting with) the legacy system.
Middleware is needed for the new interaction layer to interact with the legacy system

to derive it in order to execute the reengineered system services offered on the target

platform. Each service will have a task plan that needs to be executed on the legacy

system via the middleware and the relevant pieces of data are passed back and forth

between the legacy system and the new reengineered interaction layer.

4. Reengineering the service models produced in step 2. In this step, if needed, the way

the legacy systems services are offered or the way the users do their tasks is remodeled

and reengineered to optimize the old workflows and to take advantage of the new

features available on the target platform. For example, the limitations of character-

based user interfaces are lifted when we move to GUI or Web-based interfaces. Tasks

that are accomplished via multiple screens can be done in one Web-form. This step

can be done manually or semi automatically.

5. Generating a new interaction layer. In this step, a new interaction layer is created on

the target platform for the legacy system. This can be done by crafting it from scratch

www.manaraa.com

LEGACY SYSTEMS INTERACTION REENGINEERING 323

or by generating it from UI specifications. In the latter case, the system services or

user-task models are translated to abstract UI specifications that are then translated to

a concrete UI implementation, e.g., to XHTML for Web access or WML (Wireless

Markup Language) for WAP (Wireless Application Protocol) access.

One can look at the five steps above as divided into two phases. The first phase

is a reverse engineering that includes the first two steps and the second is a forward

engineering phase that includes the last three steps. The weight and importance of

each of these steps in each instantiation of the methodology depends on the source

and target platforms.

15.4 APPLICATIONS OF INTERACTION REENGINEERING

This section describes three instantiations of the general methodology described

above; each is applied to a different source and target platforms pair. It implicitly ex-

plains how the five steps of the generic methodology are implemented for each source

and target platforms pair. It is important to note that the weight and depth of each of

the five steps in each instantiation depends on the source and target platforms. In other

words some steps may be difficult, others may be trivial and yet others may be point-

less on certain platforms. This will become clear as we explain the three instantiations

below. This section is fully derived from the cited references for the works presented

here. It is not a comprehensive description for the works in this area, but it is meant to

cover, to a good extent, the breadth of the area.

15.4.1 From Character-Based UIs to Web and WAP Interfaces

The CelLEST project is a pioneer project on interaction reengineering (Kapoor and

Stroulia, 2001; Stroulia et al., 2003; Stroulia et al., 2002). It developed a set of tools

and methods for task-centered semi-automated reverse engineering and reengineering

of legacy CUIs of IBM legacy mainframe systems that use IBM 3270 data stream

transfer protocol to Web and WAP interfaces. IBM 3270 is a block-mode data transfer

protocol, which pushes one screen at a time to the user (as opposed to scroll-mode

data transfer protocols, which interact with the user line by line). Task-centered here

means that only the system services (or user tasks) of interest are reengineered. It was

an industrial project between the University of Alberta, Canada, and Celcorp, funded

by the Canadian National Science and Engineering Research Council (NSERC). An

overview of the CelLEST approach is shown in Figure 15.2.

In CelLEST, a mixture of artificial intelligence, data mining, and software engi-

neering and other methods was used to automate the process of “learning” and reengi-

neering legacy mainframe CUIs as much as possible. The objective was to develop an

intelligent semi-automated lightweight method for legacy system UI reengineering,

Web and WAP-enabling, and front-end integration. The project resulted in a suite of

methods and tool prototypes that were verified by reengineering several medium-size

applications. The premise of this approach is that monitoring the legacy system users

while working with the legacy application and recording traces of their interaction (di-

alog) with the legacy UI can provide the basis for learning how the legacy UI behaves.

The recorded traces are used to build, semi-automatically, the models and artifacts re-

www.manaraa.com

324 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

quired for interaction reengineering. This includes a behavioral model of the legacy

UI (state-transition model), models of the frequent user tasks of interest, an abstract

GUI specification, and an automatically generated Web-based GUI and/or WAP-based

GUI for the interesting tasks. User feedback is used to ensure the correctness and com-

pleteness of the models generated. So, the interesting user tasks are reengineered into

abstract GUI specifications, represented in XML-based syntax. These specifications

are then translated to XHTML for Web access or WML (Wireless Markup Language)

for WAP (Wireless Application Protocol) access, using the appropriate CelLEST in-

terpreter. Hence, the CelLEST approach can accomplish simultaneous reengineering

of the same legacy UI to different platforms, using the platform-independent abstract

GUI specifications.

The CelLEST approach consists of the following tasks, which are briefly explained

and related to the five steps described earlier in Section 15.3.

1. Trace Recording. An IBM 3270 emulator is instrumented to record long traces

of the interaction between the legacy system UI and its users while performing their

regular tasks.

2. User Interface Modeling. In this task (Task T1 in Figure 15.2), the behavior of the

legacy user interface is modeled as a state-transition model using a variety of carefully

selected features. A tool called LeNDI (Legacy Navigation Domain Identifier) extracts

a vector of syntactic, semantic, and visual features for all screen snapshots recorded

in the traces and then applies clustering methods to group them in clusters and finally

identifies the unique feature vector (called screen signature) of each legacy screen

that uniquely identifies its instances (snapshots). A similar approach is applied using

learning by example to model user actions, i.e., transitions between states.

3. Modeling Frequent User Tasks. In this task (Task T2 in Figure 15.2), a novel

sequential pattern mining family of algorithms, IPM and IPM2 (El-Ramly et al.,

2002b; El-Ramly et al., 2002a), is used to extract the frequent interaction patterns

from the recorded traces according to a user-defined criterion that defines the mini-

mum length, minimum number of occurrences, and maximum permitted level of noise

for a pattern to qualify for discovery. An interaction pattern consists of a sequence of

states frequently traversed in the recorded traces, representing a sequence of legacy

screens. This is assumed to represent a user task of interest that s/he does often. Noise

is allowed up to a certain limit, in the form of additional states that may exist randomly

in the instances of a pattern, representing spurious navigation, error screens, etc.

4. Modeling Frequent User Tasks. In this task (Task T3 in Figure 15.2), the interaction

patterns discovered in T2 are augmented with the user actions necessary to execute an

instance of the pattern and with models of the data exchanged with the legacy system

to accomplish the task. This latter part is done semi-manually. A tool called Mathaino

(Kapoor and Stroulia, 2001) tries to learn by example from the pattern instances what

type of data was needed for each input. An engineer manually validates and completes

this process. Additionally, the engineer manually defines which outputs are of interest

in the resulting UI units to include them in the reengineered interaction layer. For

example, one might be retrieving information from a legacy library system and only

the information concerning book records is needed in the reengineered task, so the

www.manaraa.com

LEGACY SYSTEMS INTERACTION REENGINEERING 325

Figure 15.2 The CelLEST UI reengineering process

engineer marks the area where this information is in order to include it in the task

model.

5. Generating Abstract GUI Specifications. In this task (Task T4 in Figure 15.2),

Mathaino automatically translates the completed models of the frequent user tasks

to abstract GUI specifications in XML. This step enables simultaneous interaction

reengineering for multiple platforms.

6. Runtime UI Instantiation. In this task (Task T5 in Figure 15.2), the abstract GUI

specifications are instantiated at runtime either as an XHTML interface or a WAP in-

terface using the appropriate interpreter. Obviously, due to the big differences between

the two target platforms, the interpretation and implementation of various abstract GUI

items will differ depending on the platform.

15.5 FROM WEBSITES TO WEB SERVICES

Web Services and Service-oriented Architectures at large are the hot architectures of

the current days. Many organizations are migrating to Web services. But building

services from scratch can be expensive and may waste a lot of already existing re-

sources, especially when the required services already exist in current websites. This

necessitates the development of automated reengineering tools to reengineer existing

websites to Web services and produce the corresponding WSDL (Web Services De-

scription Language) specifications. Jiang et al (2004) developed an interaction reengi-

www.manaraa.com

326 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

neering method to semi-automatically discover and model services from the behavior

of websites and then wrap them as Web services, without changing the code.

The key idea is to reverse engineer the user interface of the Web application to

extract from its behavior the set of functionalities it delivers. So, a website is looked

at as if it is a service provider. They see pairs of browser-issued HTTP requests and

the corresponding HTML response by the server, to be naturally corresponding to the

input and output messages of a Web service operation. Then, using the process and

supporting tools they developed, they translate these pairs to service descriptions as

shown in Figure 15.3.

The process they used is implemented in a series of components interlinked as in

Figure 15.3. Note that step one in the general methodology described in Section 15.3

is not necessary here since websites’ maps, representing pages and their interlinks,

represent a state transition model of the legacy website. The system components are

explained in the following.

Figure 15.3 Interaction reengineering of websites to web services (Jiang and Stroulia,

2004)

1. The Document Collection Component. This component collects examples of the

behavior of the website, from which the potential services will later be mined. This

is done by exercising the website by sending to it several HTTP requests with various

input values and storing the resulting HTML response in pairs.

2. The Translator Component. This component first “cleans” the HTML documents

using JTidy (JTidy) and then the “important” parts of the HTML file are extracted and

translated into sequences of numbers to be in a format suitable for pattern mining. The

“important” parts of the HTML files are the parts that are expected to convey the main

response information to the user and they depend on two configuration parameters:

A set of “interesting delimiters.” These are HTML elements that are of impor-

tance. For example, information within HTML tags, such as or <tr> or

www.manaraa.com

LEGACY SYSTEMS INTERACTION REENGINEERING 327

<td>. These elements can be good indicators to information that is designed to

convey output information to the user.

“Landmark set.” A landmark is defined as a word or phrase frequently used in

a specific application domain. These landmark phrases are expected to be used

as labels in close proximity to the output information of the website HTML

responses.

3. The Pattern Miner Component. This component applies pattern mining (using Se-

quitur (Jiang and Stroulia, 2004) and IPM (El-Ramly et al., 2002a) algorithms) to pro-

duce a set of “good” patterns, which together cover the parts of the website response

documents that contain the information of interest to the user of the website. Hence,

each pattern corresponds to a frequently occurring sequence of HTML tags and do-

main specific landmarks, which have a possibility to be the main response information

that is expected by the user.

4. The Pattern-Visualizer Component. This component allows the user to examine the

patterns and filter out the ones that are not actually useful response information.

5. The Service Description Component (The Service Interface Editor). This compo-

nent takes as input the filtered patterns and the corresponding HTML response docu-

ments in which they appear. It automatically calculates the locations of the patterns’

instances in these pages as XPATH expressions and generates a relative XPATH within

the pattern for each piece of data selected by the user. Using an editor, the user can

designate a name and a data type to each piece of data. This specifies the set of data

types that the reengineered Web service will deliver as parameters of the output mes-

sages of its operations. Based on the data types defined, this component also provides

support for specifying the messages, operations and port types of the Web service.

These specifications, together with the information about the website’s URL, re-

quest protocol and input parameters—originally contained in the configuration files,

constitute a WSDL description of the reengineered Web service, which can be reused

in a Web services application. This specification is implemented by a runtime compo-

nent capable of executing the original website when it receives the input message—

corresponding to the original HTTP request—and producing the output message by

parsing the website HTML response. Given this WSDL specification, a remote client

application can correctly access the website through this runtime component and re-

ceive the desired output information.

15.5.1 From Form-based User Interfaces to Web Services

Canfora et. al. (2006) developed an interaction reengineering method for migrating

form-based user interfaces. Form-based user interfaces are a special case of block-

mode data transfer protocols, e.g., IBM 3270, where the flow of data between the

system and the user is described by a sequence of query/response interactions or forms

with fixed screen organization. This method produces a wrapper that interacts with

the legacy system as though it were a user. It does so with the help of a Finite State

Automata (FSA) that describes the interaction between the user and the legacy system

as shown in Figure 15.4. Unlike the method described in Section 15.4.1 which only

reengineers the interesting functionality for access via Web and mobile interfaces, this

www.manaraa.com

328 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

method aims to wrap the entire system functionality for access as Web service. The

idea is that each use case of the legacy system will be reengineered to a Web service.

A use case represents all the possible interaction scenarios between the user and the

legacy UI and is represented as an FSA as in Figures 15.4 and 15.5. In this FSA (1)

a state is a screen template plus a set of actions to be performed on its fields and (2)

a transition is a user action, e.g., set input field, get output field and submit button.

There is an initial state where the interpreter starts and a final state where the use case

ends. A screen template is composed by a set of input fields, output fields and labels,

each is associated with a location on the screen. A screen template does the job of

the screen signature described in Section 15.4.1 but is much simpler, since the method

described here is limited to form-based legacy CUIs. Finding use cases, developing

the FSA, and building the screen templates are done completely manual.

(a) Form-Based Systems Flow of Data (b) Web Services Flow of Data

(c) Changing the Interaction Paradigm of Form-based Legacy Systems Web Ser-
vices

The FSA is non-deterministic; given a starting state and an input action, (and there

is more than one possible transition) one cannot tell which transition will be made.

This is because the approach is a black box technique and this information is in the

source code. FSAs are stored in an FSA description document, which is a repository

that stores the XML files containing the specification of the FSA associated with each

service (use case) offered by the legacy system.

System Architecture
The organization of the system developed to implement this method is shown in

Figure 15.5. Its components are explained in the following.

1. The Wrapper and the Automaton Engine. The main goal of the wrapper is to

drive the execution of the uses cases on the legacy system by providing it with

the needed flow of data and commands using the FSA of that use case. This

is mainly done by the automaton engine component, which is responsible for

interpreting the FSA associated with a given service offered by the legacy sys-

tem. The automaton engine’s operation can be summarized in the following

activities:

Start Activity

– A request of the Web service is received.

– The automaton engine is initialized and the corresponding FSA of the

use case of the Web service request is loaded.

– The legacy application is started and the wrapper intercepts the form

received.

– The current state of the FSA is found. This is done by comparing the

returned form by the form template of each state in the FSA model.

www.manaraa.com

LEGACY SYSTEMS INTERACTION REENGINEERING 329

Figure 15.4 Interaction reengineering of form-based CUIs to Web services

Interception Activity

– While the Current state is not the final state of the interaction, the

engine submits the new input and commands to the legacy system,

and waits for the new screen returned indicating that a new interaction

state has been reached. The current interaction state is updated using

screen analysis.

– When the current state is the final state, the wrapper leaves the inter-

ception activity and enters the final one.

Final Activity

– The wrapper composes the Web service Response Message on the

basis of the data values stored in the automaton variables.

(a) Form-Based Systems Flow of Data (b) Web Services Flow of Data

(b) Web Services Flow of Data

www.manaraa.com

330 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 15.5 System architecture for form-based CUI reengineering to Web services (Can-

fora et al., 2006)

2. The Terminal Emulator. “The terminal emulator manages the communication

between the wrapper and the legacy system, producing the flow of data and

commands between the parties.

3. The State Identifier. This is needed because the FSA is non-deterministic and so

the automaton engine needs to know where in the FSA is the currently returned

form. The state identifier recognizes which screen template associated to these

possible states matches with the screen returned by the legacy system. To im-

plement this task, the state identifier exploits the descriptions of the templates

included in the repository. Also, at the end of the identification task, the state

identifier localizes labels, input fields and output fields (getting their values)

from the screen and provides this information to the automaton engine.

After implementing the system, a deployment phase is needed during which all the op-

erations needed to publish the Web services and export them on an application server

have to be performed. That is, the WSDL specification for each service is made.

1. The Industrial Perspective

So far, we described progress in interaction reengineering from a research perspective.

It is important to briefly touch on the state of the practice in industry. We do so by

briefly describing an interaction reengineering tool from IBM for iSeries and zSeries

applications to see what is actually doable in industry using interaction reengineer-

ing. This is the IBM Host Access Transformation Services (HATS) (Hartung et al.,

2006). This is by no means an endorsement for this product. It was not chosen for any

particular reason other than the availability of very good technical documentation that

describes how it works. It is important to notice that most products in the market for

interaction reengineering are for reengineering CUI systems running on mainframes

and the like for access as Web services and through the Web.

IBM Host Access Transformation Services (HATS)
IBM WebSphere Host Access Transformation Services (HATS) (Hartung et al.,

2006) is an interaction reengineering tool for Web-facing IBM applications that use

www.manaraa.com

LEGACY SYSTEMS INTERACTION REENGINEERING 331

3270 and 5250 data transfer protocols (iSeries and zSeries applications). HATS im-

plements an instance of the general methodology described in Section 15.4.1. HATS

uses an interceptor to catch the 3270 or 5250 data stream and transforms it into HTML

pages based on preconfigured rules. HATS support user task reengineering and opti-

mization by combining data from multiple host screens that can be navigated using a

repeatable system of navigation. Using a wizard and an editor, the engineer defines

screen recognition criteria for the beginning and ending screens, how to navigate from

screen to screen, the screen region containing the data to gather, and the component

and widget to use to recognize and render the gathered data. It is possible to do further

development work on the output of the rules by creating a JSP for that specific screen

transformation.

HATS allows some flexibility in user task reengineering to accommodate uncer-

tainty and unexpected events on the host, e.g., it allows defining:

Global Screens, i.e., screens that are intermittently or randomly displayed and

always require the same action, e.g., error screens, system messages, etc.

Data Looping, which allows repeating an action, e.g., displaying the next page

of a query result, until a condition is met.

Landmarks, i.e., specific labels on a legacy screen that are used for relative

identification of information elements (inputs or outputs) on the screen, instead

of relying solely on the coordinates of the elements.

Alternative Paths, i.e., auxiliary navigational paths that may exist for a user task.

HATS can consolidate multiple existing applications, without modification, into one

single integrated view. It can combine multiple back-end resources, e.g., 3270 and

5250, under one Web front-end. Thus, new user tasks can be created/automated to

eliminate the need to manually transfer data between various back-ends to accomplish

a task. This is useful for integrating similar legacy systems at the front-end level due

to business merger for example.

15.6 ADVANTAGES AND LIMITATIONS

In this chapter we presented a general methodology for interaction reengineering and

discussed some instantiations of this methodology. The methodology consists of two

phases. The first is a reverse engineering phase, during which, a map or model of

the legacy user interface is built and also models of the services to be reengineered

and migrated. The second is a forward engineering phase, in which, a reengineered

interaction layer is built that derives the legacy system to perform user tasks while in-

teracting with him/her through the new target platform. Legacy system access middle-

ware is built or bought to mediate between the legacy system and the new interaction

layer. In these concluding remarks we emphasize the advantages and limitations of

interaction reengineering.

The primary advantage of interaction reengineering is that it is a lightweight, risk-

free non-invasive approach. It is the only reengineering option when source code is

unavailable and is a very viable option when it is highly undesirable to change or alter

www.manaraa.com

332 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

the source code. It is lightweight in the sense that it is a cheap and quick solution

and also in the sense that the skills required are not sophisticated. It is a non-invasive

solution that can be implemented and used in parallel to normal operation of the legacy

system.

On the other hand, interaction reengineering is limited in a number of ways. First,

the reengineered interaction is restricted by what is available through the legacy in-

teraction layer. In other words, no service can be offered through the reengineered

interaction layer unless it is already offered through the legacy interaction layer, either

as a whole or as an aggregation of different subservices. Second, the reengineered

interaction layer is vulnerable to the unexpected events on the legacy system, e.g., sys-

tem or administrator messages. However, there are technologies that limit the effect of

this issue. Third, if the legacy system is subject to frequent changes to its interaction

layer, it can be laborious, costly, and error-prone to keep changing the reengineered

interaction layer accordingly. But again some technologies offer batch changes and

other facilities that limit the effect of this issue. Finally, in interaction reengineering

we actually add a new layer on top of an existing system that may affect performance

and create, in some cases, an extra level of complexity

Despite these limitations, we think that interaction reengineering is an emerging

viable and promising reengineering methodology that can offer high-quality cost-

effective solutions particularly in cases, where no other options are available. We

laid down the foundation for this area and briefly described some of the major works

and we hope that future research and practice will strengthen and further validate this

methodology.

References

Baxter, I., Pidgeon, C., and Mehlich, M. (2004). DMS: Program transformations for

practical scalable software evolution. In ICSE, pages 625–634. IEEE Computer

Society.

Berman, D. and Bregar, K. (2001). Don’t Replace – Extend: Why Leveraging Your
Legacy Systems Is the Way to Go. Enterprise Systems.

Canfora, G., Fasolino, A., Frattolillo, G., and Tramontana, P. (2006). Migrating in-

teractive legacy systems to Web services. In Conference on Software Maintenance
and Reengineering (CSMR06), pages 24–36. IEEE Computer Society.

Comella-Dorda, S., Wallnau, K., Seacord, R., and Robert, J. (2000). A survey of

legacy system modernization approaches. Technical Report CMU/SEI-2000-TN-

003, Software Engineering Institute.

El-Ramly, M., Stroulia, E., and Sorenson, P. (2002a). From runtime behavior to usage

scenarios: An interaction-pattern mining approach. In Hand, D., Keim, D., and Ng,

R., editors, Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-02), pages 315–324, ACM Press.

El-Ramly, M., Stroulia, E., and Sorenson, P. (2002b). Recovering software require-

ments from system-user interaction traces. In Proceedings of the 14th International
Conference on Software Engineering and Knowledge Engineering (SEKE), pages

447–454. ACM Press.

www.manaraa.com

LEGACY SYSTEMS INTERACTION REENGINEERING 333

Grechanik, M., Batory, D., and Perry, D. (2002). Integrating and reusing GUI-driven

applications. In Gacek, C., editor, Software Reuse: Methods, Techniques, and
Tools, 7th International Conference, ICSR-7, Austin, TX, USA, April 15-19, 2002,
Proceedings, volume 2319 of Lecture Notes in Computer Science, pages 1–16.

Springer.

Hartung, G., Klaedtke, R., Lowery, E., McCarty, E., Motmans, E., and Nartovich, A.,

editors (2006). IBM System i Application Modernization: Building a New Interface
to Legacy Applications. IBM Redbooks Series. IBM.

Jiang, Y. and Stroulia, E. (2004). Towards reengineering websites to web-services

providers. In Proceedings of the Conference on Software Maintenance and Reengi-
neering (CSMR), pages 296–308. IEEE Computer Society.

JTidy. JTidy: Java port of HTML tidy. http://sourceforge.net/projects/jtidy/.

Kapoor, R. and Stroulia, E. (2001). Mathaino: Simultaneous legacy interface migration

to multiple platforms. In Proceedings of the Ninth International Conference on
Human-Computer Interaction, Volume 1, pages 51–55.

Liu, Z., Ballantyne, M., and Seward, L. (1994). An assistant for reengineering legacy

systems. In Proceedings of the 6th Innovative Applications of Artificial Intelligence
Conference, pages 95–102.

Mossienko, M. (2003). Automated COBOL to Java recycling. In Proceedings of the
7th European Conference on Software Maintenance and Reengineering (CSMR),
pages 40–50. IEEE Computer Society.

Sneed, H. (2000). Accessing legacy mainframe applications via the Internet. In Pro-
ceedings of the 2nd Int. Workshop on Web Site Evolution (WSE’2000).

Stroulia, E., El-Ramly, M., Iglinski, P., and Sorenson, P. (2003). User interface reverse

engineering in support of interface migration to the Web. Automated Software En-
gineering, 10(3):271–301.

Stroulia, E., El-Ramly, M., and Sorenson, P. (2002). From legacy to Web through inter-

action modeling. In Proceedings of the 18th International Conference on Software
Maintenance (ICSM), pages 320–329. IEEE Computer Society.

Zou, Y. and Kontogiannis, K. (1999). Enabling technologies for web-based legacy

system integration. In Proceedings of the 1st International Workshop on Web Site
Evolution (WSE’99).

www.manaraa.com

16 USING REVERSE ENGINEERING

FOR AUTOMATED USABILITY

EVALUATION OF GUI-BASED

APPLICATIONS
Atif M. Memon

Department of Computer Science, University of Maryland, College Park, Maryland, USA

Abstract. Graphical user interfaces (GUIs) are important parts of today’s software

and their usability ensures the usefulness of the overall software. A popular technique

to check the usability of GUIs is by performing usability evaluations either manually or

automatically using tools. While manual evaluation is resource intensive, performing

automatic usability evaluation usually involves the creation of a model of the GUI, a

significant resource-intensive step that intimidates many practitioners and prevents the

application of the automated techniques. This chapter presents “GUI ripping,” a new

process that automatically recovers models of the GUI by dynamically “traversing” all

its windows and extracting all the widgets, properties, and values. The usefulness of

this process is demonstrated by recovering a structural model called a GUI forest and

dynamic models called event-flow graphs and integration trees. Results of case studies

show that GUI ripping is effective and requires very little human intervention.

16.1 INTRODUCTION

Graphical user interfaces (GUIs) are one of the most important parts of today’s soft-

ware (Memon, 2002). They make software easy to use by providing the user with

335

www.manaraa.com

336 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

highly visual controls that represent everyday objects such as menus, buttons, lists,

and windows. Recognizing the importance of GUIs, software developers are dedicat-

ing large parts of the code to implementing GUIs (Memon, 2001). The usability and

correctness of this code is essential for the usefulness of the overall software. This

chapter leverages techniques previously developed for GUI testing (Memon et al.,

2001a; Memon, 2001; Memon, 2002; Memon, 2003; Memon et al., 1999; Memon

et al., 2003,), and applies it to improve the usability of GUIs. Borrowing the termi-

nology used in ISO9241, Ergonomic requirements for office work with visual display
terminals, we note that usability is “... the extent to which a computer system can be

used by users to achieve specified goals effectively and efficiently while promoting

feelings of satisfaction in a given context of use” A popular technique to measure

the usability aspects of a GUI and identify specific problems is by conducting usability

evaluations (Nielsen, 1994; Dix et al., 3 19; Nielsen, 1993).

A large number of usability evaluation techniques have been proposed (Nielsen

and Molich, 1990,; Baker et al., 2002,; Wixon, 2003,; Pinelle and Gutwin, 2002,;

Morley, 1998,; Marsh, 1999,; John, 1996,) and are in use (Wixon, 2003,; Rohn et al.,

2002,; Perlman, 1996,). Many techniques are manual and require performing human-

intensive tasks. To reduce the cost of usability evaluations, several automated tech-

niques have been proposed (Kieras et al., 1995,; Castillo et al., 1998,; Hilbert and

Redmiles, 2000,) to complement the manual techniques. Examples include systems

such as GLEAN (Kieras et al., 1995) that generates quantitative predictions from a

supplied GOMS model and a set of benchmark tasks, and USAGE (the UIDE System

for semi-automated GOMS evaluation) (Byrne et al., 1994) that takes the application

model necessary to drive the UIDE system and generates an NGOMSL model of the

interface.

While the above types of systems require the development of a usage model for

the software, other systems take an alternative approach—they provide some limited

platform-specific support to extract information from the interfaces at a level of ab-

straction that is useful for evaluating usability. Hilbert and Redmiles (Hilbert and

Redmiles, 2000) provide an excellent survey of computer-aided techniques/tools used

to extract usability-related information from user interfaces and develop a framework

to help compare the approaches that have been applied to this problem.1 These tools

are useful in that they assist in usability evaluation but require considerable human in-

tervention (Ivory and Hearst, 2001). A typical example is the SHERLOCK tool suite

developed by Mahajan and Shneiderman (Mahajan and Shneiderman, 1996), which

includes a translator program to convert Visual Basic form and resource files into a

canonical format. The canonical form is not general, i.e., it has limited applicability

and the translator works on Visual Basic sources. Similarly, most other automated

techniques developed so far are also either restrictive in their scope or require the de-

velopment of a complex usage model of the GUI—a significantly resource intensive

task that intimidates many practitioners and prevents the application of the techniques.

There is a need for techniques/tools that can obtain both structural and behavioral in-

1 Note that a discussion of tools for Web applications (Brinck and Hofer, 2002,; Winckler et al., 2000,) is

beyond the scope of this chapter.

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 337

formation automatically from the GUI and allow usability engineers to fine-tune it to

their needs.

This chapter presents two general-purpose models that can be automatically de-

rived from the GUI—a structural and a behavioral model. A technique called GUI
ripping is used to obtain these models directly from the executing GUI. Once verified

manually, these models are then used for automatic usability evaluation. GUI ripping

has numerous other applications such as testing, porting and controlling legacy ap-

plications to new platforms (Moore, 1996), and developing model checking tools for

GUIs (Dwyer et al., 1997). For space reasons this chapter will provide details relevant

to the usability evaluation process.

GUI ripping is a dynamic process that is applied to an executing software’s GUI.

Starting from the software’s first window (or set of windows), the GUI is “traversed”

by opening all child windows. All the window’s widgets (building blocks of the GUI,

e.g., buttons, text-boxes), their properties (e.g., background color, font), and values
(e.g., red, Times New Roman, 18pt) are extracted. Developing this process has several

challenges that required us to develop novel solutions. First, the source code of the

software may not always be available; techniques that extract information from the

executable files had to be developed. Second, there are no GUI standards across dif-

ferent platforms and implementations; all the information had to be extracted via low-

level implementation-dependent system calls, which are not always well-documented.

Third, some implementations may provide less information than necessary to perform

automated usability evaluation; heuristics had to be developed to determine missing

parts. Finally, the presence of infeasible paths in GUIs prevents full automation. For

example, some windows may be available only after a valid password has been pro-

vided. Since the GUI Ripper may not have access to the password, it may not be

able to extract information from such windows. New processes and tool support to

manually add parts to the extracted GUI model had to be developed.

GUI ripping is used to extract both the structure and execution behavior of the GUI

– both essential for automated usability evaluation. The GUI’s structure is represented

as a GUI forest and its execution behavior as event-flow graphs and an integration
tree (Memon et al., 2001b). Each node of the GUI forest represents a window and

encapsulates all the widgets, properties, and values in that window; there is an edge

from node x to node y if the window represented by y is opened by performing an

event in the window represented by node x, e.g., by clicking on a button. Intuitively,

event-flow graphs and the integration tree represent the flow of events in the GUI.

Details of these structures are provided in Section 16.2.

The GUI ripping algorithm has been implemented in a software called the GUI
ripper. Details are provided of two instances of the GUI ripper, one for Microsoft

Windows and the other for Java Swing applications. The performance of the ripper is

evaluated on four Java applications with complex GUIs, Microsoft’s WordPad, Yahoo

Messenger, and Microsoft’s Notepad. The results of the evaluations show that the

ripping process is efficient, in that it is very fast and requires little human intervention.

The evaluation also shows that ripping consumes very little resources.

The specific contributions of the work include the following.

www.manaraa.com

338 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

An efficient algorithm to extract a software’s GUI model without the need for

its source code.

New structures called GUI forests, integration tree, and event-flow graphs.

New usability metrics for the above new structures.

Implementation details of a new tool that can be applied to a large number of

MS Windows and Java Swing GUIs.

It is important to note that the work presented in this chapter is viewed as a valu-

able addition to the usability engineer’s tool-box, not a substitute to manual usability

evaluation. There are many goals of usability evaluation and many of them require sig-

nificant human opinion, such as satisfaction. However, automated usability evaluation

can help to save significant manual effort.

The next section formally presents the GUI models that are obtained by the GUI

ripper. The design of the ripper and an algorithm that can be used to implement the

ripper follow. Section 16.4 discusses the MS Windows and Java implementations of

the GUI ripper. Empirical evaluations of the algorithms are done on several large and

popular software. A discussion of related, ongoing, and future work concludes the

chapter.

16.2 GUI MODEL

During GUI ripping, a representation of the GUI that models its structure and exe-

cution behavior is created from the executing GUI. Since developing general model

extraction solutions for all types of GUIs is difficult, this research focus on an impor-

tant subclass of GUIs is described next.

16.2.1 What Is a “GUI”?

GUIs, by their very nature, are hierarchical. This hierarchy is reflected in the grouping

of events in windows, dialogs, and hierarchical menus. A GUI user focuses on events

related by their functionality, e.g., by opening a particular window or clicking on a

pull-down menu. For example, all the “options” in MS Internet Explorer can be set by

interacting with events in one window of the software’s GUI.

The important characteristics of GUIs include their graphical orientation, event-

driven input, hierarchical structure, the widgets they contain, and the properties (at-

tributes) of these widgets. Formally, the class of GUIs of interest may be defined as

follows:

Definition: A Graphical User Interface (GUI) is a hierarchical, graphical front-end

to a software system that accepts as input user-generated and system-generated

events, from a fixed set of events and produces graphical output. A GUI contains

graphical widgets; each widget has a fixed set of properties. At any time during

the execution of the GUI, these properties have discrete values, the set of which

constitutes the state of the GUI. �

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 339

The above definition specifies a class of GUIs that have a fixed set of events that can

be performed on widgets with discrete-valued properties. This definition would need

to be extended for other GUI classes such as web-user interfaces that have synchro-

nization/timing constraints among objects and movie players that show a continuous

stream of video rather than a sequence of discrete frames. This chapter focuses on

techniques to evaluate the class of GUIs defined above.

16.2.2 GUI Forest

The first GUI representation that is obtained during the ripping process is called a

GUI forest. Intuitively, the GUI forest represents the structure of the GUI’s windows

as nodes of the forest, and the hierarchical relationship between windows as edges.

Each node encapsulates the state of a window that constitutes the window’s widgets,

their properties, and values.

A GUI window is modeled as a set of widgets (e.g., buttons, labels, text fields) that

constitute the window, a set of properties (e.g., background color, size, font) of these

widgets, and a set of values (e.g., red, bold, 16pt) associated with the properties. Each

window will contain certain types of widgets with associated properties. At any point

during its execution, the window can be described in terms of the specific widgets that

it currently contains and the values of their properties. More formally, a window is

modeled at a particular time t in terms of:

widgets W = {w1, w2, ..., wl}, i.e., the widgets that the window currently con-

tains,

properties P = {p1, p2, ..., pm} of the widgets, and

values V = {v1, v2, ..., vn} of the properties.

For example, consider the Open window shown in Figure 16.1(a). This window

contains several widgets, two of which are explicitly labeled, namely, Button1 and

Label1; for each, a small subset of properties is shown. Note that all widget types

have a designated set of properties and all properties can take values from a designated

set.

The set of widgets and their properties can be used to create a model of the state of

the window.

Definition: The state of a window at a particular time t is the set S of triples

{(wi, pj , vk)}, where wi ∈ W , pj ∈ P , and vk ∈ V . �

A description of the complete state would contain information about the types of

all of the widgets currently extant in the window, as well as all of the properties and

their values for each of those widgets. The state of the Open window, partially shown

in Figure 16.1(b), contains all the properties of all the widgets in Open.

The windows of the GUI form a hierarchy — once the software is invoked, the

user is presented with a top-level window (or set of windows). All other windows of

the GUI are invoked from one of the top-level windows or from their descendants.

In general, the relationships among windows may be represented by a set of directed

www.manaraa.com

340 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 16.1 (a) Open window, (b) its Partial State

Figure 16.2 Examples of GUI forests

acyclic graphs (DAGs), since multiple windows may invoke a window. However,

each DAG can be converted into a tree by copying nodes. A tree model simplifies the

algorithms based on tree traversals. Note that since most GUIs have a single top-level

window, in most cases, the forest reduces to a single tree. Formally, a GUI forest is

defined as:

Definition: A GUI forest is a triple < W, T , E >, where W is the set of windows and

T ⊆ W is a designated set of windows called the top-level windows. E is

the set of directed edges: there is an edge from node x to node y if the window

represented by y is opened by performing an event in the window represented

by node x. �

Different types of GUI forests may be obtained depending on the types of win-

dows that the GUI contains. For the purpose of modeling, two types of windows are

important: modal windows and modeless windows.

Definition: A modal window is a GUI window that, once invoked, monopolizes the

GUI interaction, restricting the focus of the user to a specific range of events

within the window, until the window is explicitly terminated. �

Button1

Label1
Align

Caption

Color

Font

Caption

Enabled

Visible

Height

Cancel

TRUE

TRUE

65

alNone

Files of type:

clBtnFace

(tFont)

State = {(Label1, Align, alNone), (Label1, Caption, “Files of type:”),

(Label1, Color, clBtnFace), (Label1, Font, (tfont)), (Form1, WState,

wsNormal), (Form1, Width, 1088), (Form1, Scroll, TRUE), (Button1,

Caption, Cancel), (Button1, Enabled, TRUE), (Button1, Visible, TRUE),

(Button1, Height, 65), …} (b)

(a)

1

2 3 4

1

2 3

1 2

3 4 5 6

1 2 3

4 5 6 7 8

(a) (b) (c) (d)

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 341

The language selection window is an example of a modal window in MS Word —

when the user performs the event Set Language, a window Language opens; the

user spends time selecting the language, and explicitly terminates the interaction by

either performing OK or Cancel.

Other windows in the GUI are called modeless windows that do not restrict the

user’s focus; they merely expand the set of GUI events available to the user. For

example, in the MS Word software, performing the event Replace opens a modeless

window entitled Replace.

Figure 16.2 shows some examples of GUI forests. The shaded nodes represent

modal windows and unshaded nodes represent modeless windows. Dashed boxes

group windows that open simultaneously. Figure 16.2(a) shows the simplest case of

a GUI in which window 1 is a modal window; three events in window 1 are used

to open three windows 2, 3, and 4, where 2 and 4 are modal, and 3 is modeless. Fig-

ure 16.2(b) shows a more complex case of a GUI in which window 1 contains an event

that opens two windows 2 and 3 simultaneously, where 2 is modal and 3 is modeless.

Figure 16.2(c) shows a case where the software presents two top-level windows to the

user. Window 1 is modal and 2 is modeless. Figure 16.2(d) shows another case with

multiple top-level windows, i.e., 1, 2 and 3. Windows 1 and 2 contain events that open

two windows ({4, 5} and {6, 7} respectively) simultaneously.

Figure 16.3 shows the GUI forest (in this case a single tree) for MS WordPad.

Note that the window that is presented to the user when WordPad is launched is called

the “top-level” window and forms the root of the tree. All other windows are either

invoked from the top-level window or from one of the child windows. For example, the

window “connect to printer” is invoked from “page setup-2” which in turn is invoked

from “page setup-1.”

The GUI forest represents the static structure of the GUI. For usability evaluation, a

usability engineer may choose to associate additional attributes with each entity in the

GUI forest. Common examples (and the ones used in Section 16.5) include depth of a
node, which is the “distance” of a window from a top-level window; branching factor,

which is the number of windows that can be invoked from a given window; number
of events per window, which indicates the complexity of each window. Note that by

default, the forest contains values of properties for each widget in each window of the

GUI, allowing the usability engineer to compute any structural usability metric.

16.2.3 Flow of Events

Additional information is collected during ripping to develop new structures that

model the GUI’s execution behavior called its flow of events. Moreover, for usability

evaluation, units of interaction, i.e., parts of the GUI that can be evaluated in isolation

are defined. The ripping process extracts additional information from the GUI such as

event types to develop these structures. To develop units of interaction, the GUI’s hi-

erarchy is exploited to identify groups of GUI events that can be analyzed in isolation.

One hierarchy of the GUI and the one used in this research is obtained by examining

the structure of modal windows in the GUI.

At all times during interaction with the GUI, the user interacts with events within a

modal dialog. This modal dialog consists of a modal window X and a set of modeless

www.manaraa.com

342 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 16.3 GUI Forest (Tree) for MS WordPad

windows that have been invoked, either directly or indirectly by X . The modal dialog

remains in place until X is explicitly terminated. Intuitively, the events within the

modal dialog form a GUI component.

Definition: A GUI component C is an ordered pair (RF , UF), where RF represents

a modal window in terms of its events and UF is a set whose elements represent

modeless windows also in terms of their events. Each element of UF is invoked

either by an event in UF or RF . �

Note that, by definition, events within a component do not interleave with events

in other components without the components being explicitly invoked or terminated.

Since components are defined in terms of modal windows, a classification of GUI

events is used to identify components. The first class of events, called restricted-
focus events, open modal windows. For example, Set Language in MS Word is

a restricted-focus event. The second class, called unrestricted-focus events, open

modeless windows. For example, Replace in MS Word is an unrestricted-focus

event. Termination events close modal windows; common examples include Ok and

Cancel.

The GUI contains other types of events that do not open or close windows but make

other GUI events available. These events, called menu-open events, are used to open

menus. They expand the set of GUI events available to the user. Menu-open events

do not interact with the underlying software. Note that the only difference between

menu-open events and unrestricted-focus events is that the latter open windows that

NEW

PAGE SETUP - 1

PASTE SPECIAL

FONT

OPTIONS

OPEN - 1

TOP-LEVEL

PRINTER

CONNECT TO PRINTER

PAGE SETUP - 2

PARAGRAPH

DATE AND TIME

OPEN

PRINT

TABS

INSERT OBJECT

CHANGE ICON

OPEN - 2

FIND

REPLACE

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 343

Table 16.1 Event types in some GUIs

must be explicitly terminated. The most common example of menu-open events are

generated by buttons that open pull-down menus. For example, in MS Word, File
and SendTo are menu-open events.

Finally, system-interaction events interact with the underlying software to per-

form some action; common examples include the Copy event used for copying ob-

jects to the clipboard. Table 16.1 lists some of the components of some of the subject

applications used in the empirical study. Each row represents a component and each

column shows the different types of events available within each component. Main
is the component that is available when the application is invoked. Other compo-

nents’ names indicate their functionality. For example, FileOpen is the component

of WordPad used to open files.

Term

.

Rest.

Focus

Unrest.

Focus

Sys.

Int.

Menu

Open

Main 1 11 2 69 6

FileNew 2 0 0 2 0

FileOpen 2 0 0 18 0

FilePrint 2 0 0 3 0

Main 1 15 2 66 4

Login 1 0 0 12 0

Send File 1 1 0 9 0

Join Room 1 0 0 22 0

Main 1 4 1 13 4

FilePageSetup 2 1 0 25 0

PageSetUpFaxProps 2 0 0 3 0

Main 1 7 0 101 6

ImageStrech 2 0 0 12 0

ImageRotate 2 0 0 6 0

ImageAttribute 2 0 0 9 0

Main 1 3 1 54 6

FormatFormatCell 2 2 0 13 0

FmttCellBackColor 2 0 0 35 0

FileSave 1 0 0 19 0

Main 1 4 3 35 4

EditGoto 1 0 0 3 0

ChangeFont 2 0 0 2 0

Main 1 3 0 44 4

About 1 0 0 1 0

Component

TerpPaint

TerpSpreadSheet

TerpWord

TerpCalc

Event Types

WordPad

Yahoo Messenger

Notepad

www.manaraa.com

344 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 16.4 Partial event-flow graph of MS WordPad

16.2.4 Event-Flow Graphs

A GUI component’s flow of events may be represented as a flow graph. Intuitively, an

event-flow graph represents all possible interactions among the events in a component.

Definition: An event-flow graph for a component C is a 4-tuple <V, E, B, I> where:

1. V is a set of vertices representing all the events in the component. Each

v ∈ V represents an event in C.

2. E ⊆ V × V is a set of directed edges between vertices. Event ej follows
ei iff ej may be performed immediately after ei. An edge (vx, vy) ∈ E iff

the event represented by vy follows the event represented by vx.

3. B ⊆ V is a set of vertices representing those events of C that are available

to the user when the component is first invoked.

4. I ⊆ V is the set of restricted-focus events of the component.

�

An event-flow graph is created by identifying the events in a GUI component. For

every event e, the events that can be performed immediately after e are identified. They

are linked with e using the follows relation. An example of an event-flow graph for the

“connect to printer” component of MS WordPad is shown in Figure 16.4. The nodes

represent events in the component and the edges show the follows relationship.

16.2.5 Integration Tree

Once all the components of the GUI have been represented as event-flow graphs, the

remaining step is to identify event flows among components. A structure called an in-
tegration tree is constructed to identify interactions (invocations) among components.

EDIT
SET-TEXT

OK
LEFT-CLICK

PRINTER INFO

LEFT-CLICK

CANCEL
LEFT-CLICK

LISTBOX
SELECT ROW

EDIT
LEFT-CLICK

EXPAND BY DEFAULT
LEFT-CLICK

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 345

Figure 16.5 Visiting each node of a forest

Definition: Component Cx invokes component Cy if Cx contains a restricted-focus

event ex that invokes Cy . �

Intuitively, the integration tree shows the invokes relationship among all the com-

ponents in a GUI. Formally, an integration tree is defined as:

Definition: An integration tree is a triple < N ,R,B >, where N is the set of com-

ponents in the GUI and R ∈ N is a designated component called the Main
component. B is the set of directed edges showing the invokes relation between

components, i.e., (Cx, Cy) ∈ B iff Cx invokes Cy . �

Note that a software’s integration tree is very different from its GUI forest; each

node in a GUI forest represents a window whereas a node in an integration tree repre-

sents a group of windows (called a component, as defined earlier).

The event-flow graphs and integration trees can be used to obtain a wealth of usabil-

ity metrics for the GUI. Some of these metrics (used in Section 16.5) include average
number of nodes in an EFG, average number of outgoing edges per node, and aver-
age number of edges in an EFG; these metrics define the usability complexity of each

modal dialog; nodes and edges in an integration tree define the usability complexity

of the entire GUI.

16.3 DESIGN OF THE GUI RIPPER

The process of GUI ripping consists of two steps. First, the GUI of the application is

automatically traversed and its structure is extracted by an automated tool called the

GUI ripper. However, for reasons described later, the automated tool may miss some

parts of the GUI. A usability engineer has to manually inspect the model and add these

missed parts using additional tools.

16.3.1 GUI Traversal and Extraction Algorithm

As discussed earlier, the GUI of an application is structured as a forest. This struc-

ture is obtained by performing a depth-first traversal of the hierarchical structure

of the GUI. A generalized depth-first search algorithm is shown in Figure 16.5. The

PROCEDURE DFS-Trees(DFS-Forest F)

R /* Set of all root nodes in the forest F */ 1

FORALL root ∈ R DO 2

DFS-Tree-Recursive(root) 3

PROCEDURE DFS-Tree-Recursive(Node n)

W = get-child-nodes(n) 4

W /* Set of child nodes of the node being visited */ 5

FORALL w ∈ W DO 6

DFS-Tree-Recursive(w) 7

www.manaraa.com

346 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

procedure DFS-Trees takes as input a forest, represented as a set of trees. It per-

forms a DFS traversal starting from the root of each tree (lines 2–3). The procedure

DFS-Tree-Recursive visits the tree rooted at node n. A list W of all the child

nodes of the node n is obtained (line 4). Then a recursive visit for the subtrees rooted

at each of the child nodes is performed (line 6–7).

The algorithm of Figure 16.5 is tailored to handle GUI traversal. The re-

sulting algorithm is shown in Figure 16.6. Two procedures DFS-GUI and

DFS-GUI-Recursive traverse the GUI of the application and extract its struc-

ture. The function access-top-level-windows (line 1) returns the list of

top-level windows in the application. Recall that top-level windows of an applica-

tion are those windows that become visible when the application is first launched.

A tree is constructed for each of the top-level window by invoking the procedure

DFS-GUI-Recursive. The trees are constructed in the set GUI. At the termi-

nation of the algorithm, GUI contains the GUI forest of the application.

Note that lines 4–7 of Figure 16.5 has been replaced with lines 5–12 in Figure 16.6.

This is because, for a directed tree, the children of a node can be obtained by invoking

the procedure get-child-nodes. However, for a GUI application, a node is a

GUI window. It may contain several widgets, which, in turn, may invoke one or more

GUI windows. To obtain a list of all GUI windows that can be invoked from a GUI

window g, each of g’s constituent widgets is queried.

The procedure DFS-GUI-Recursive performs a depth-first search of

the GUI tree rooted at the GUI window g. In line 5 the call to

get-widget-list-and-properties returns a list W of the constituent wid-

gets in the GUI window g. The function identify-executable-widgets in

line 6 searches the set W and returns a list of widgets which invoke other GUI win-

dows. This is because not all of the widgets in W invoke other GUI windows.

A widget e that invokes other GUI windows is executed by execute-widget
in line 8. When executed, e may invoke one or more GUI windows. The function

get-invoked-gui-windows in line 9 returns the list of GUI windows invoked

by e. Note that each of the GUI windows c in the set C is a child nodes of the node g in

the GUI tree. The GUI tree GUI is updated in line 10. This is done by inserting each

GUI Window c from C as a child node of the GUI window g. Lines 11–12 performs a

recursive search of the subtree rooted at each of the invoked GUI windows c.

When the procedure DFS-GUI-Recursive returns to DFS-GUI, the tree rooted

at the top-level window t is constructed. At the completion of the procedure

DFS-GUI, the complete GUI forest of the application is available in GUI.

The algorithm described in Figure 16.6 is general and can be applied to any GUI

defined earlier. Later sections describe how the high-level functions used in the algo-

rithm may be implemented using Windows and Java API.

16.3.2 Manual Inspection

The automated ripping process is not perfect. Different idiosyncrasies of specific plat-

forms sometimes result in missing windows, widgets, and properties. For example,

there is no automatic way to distinguish between modal and modeless windows in MS

Windows; the structure of the Print dialog in Java Swing cannot be extracted. Such

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 347

Figure 16.6 Traversing and extracting the GUI of an application

platform-specific differences require human intervention. Tools to edit and view the

extracted information have also been developed. A process called “spy” allows a us-

ability engineer to manually interact with the application, open the window that was

missed by the ripper, and add it to the GUI forest at an appropriate location.

16.3.3 Generating the Event-Flow Graph and Integration Tree

During the traversal of the GUI, the event type (discussed in Section 16.2) is de-

termined by using low-level system calls. Once this information is available, the

event-flow graphs and integration tree are created relatively easily using algorithms

described in Memon (2001). Details of the algorithms are omitted here due to lack of

space.

16.4 IMPLEMENTATION

This section describes the platform-specific details of two implementations of the GUI

ripper, one for MS Windows GUIs and the other for Java Swing GUIs. The discussion

will frequently refer back to the line numbers and high-level functions invoked in the

algorithm of Figure 16.6.

GUI /* GUI tree of application */
PROCEDURE DFS-GUI(Application A)

T = access-top-level-windows(A) 1

GUI = T 2

/* T is set of top-level windows in the application */
FORALL t ∈ T DO 3

DFS-GUI-Recursive(t) 4

PROCEDURE DFS-GUI-Recursive(Window g)

W = get-widget-list-and-properties(g) 5

/* W is the set of all widgets in the Window */
E = identify-executable-widgets(W) 6

/* From W identify executable widgets */
FORALL e ∈ E DO 7

execute-widget(e) 8

/* Execute the widget e */
C = get-invoked-gui-windows(e) 9

GUI = GUI ∪ g 10

FORALL c ∈ C DO 11

DFS-GUI-Recursive(c) 12

www.manaraa.com

348 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

16.4.1 Windows Applications

The Windows Operating System provides a handle for all GUI windows and wid-

gets. The handle is an identifier, which uniquely identifies the GUI window or widget.

Using the Windows API (Application Programmers Interface) it is possible to per-

form GUI operations such as enumerating the visible GUI windows, enumerating the

widgets embedded in a GUI window and detecting the invocation of a new window.

Lines 1–2: The Windows ripper needs to identify the top-level windows of an

application. This is a manual process, where the usability engineer points-and-clicks

on the top-level windows. The GUI ripper, which executes as a background process,

records the windows handle of the top-level windows. Lines 3–4: A Recursive depth-

first search is initiated for each top-level window using its window handle.

Line 5: The procedure get-widget-list-and-properties returns the list

of all the widgets in the specified GUI window and their state. It uses the Windows

API EnumChildWindow, which takes a handle to the GUI window and returns a list of

widgets (handles) embedded in it. The handles are then queried for state information

of the widgets, such as visibility state, caption, etc. Line 6: ‘Executable’ widgets are

those that represent restricted-focus events, i.e., those that invoke other GUI windows.

The caption property of a widget is examined to see if it ends with three dots ‘...’. For

Windows applications, this signifies that the widget is executable.

Lines 7–8: An ’executable’ widget is executed by emulating a user’s left-click

mouse action. The Windows API SendMessage is used to send a message to the wid-

get to emulate it. Line 9: The procedure get-invoked-gui-windows, returns

the list of GUI windows that are actually invoked by an executable widget. This is

implemented using a Windows hook. A hook is a mechanism by which a predefined

user level function is called by Windows, whenever a specified GUI event occurs. This

event is the invoking of one or more GUI windows. If the widget invokes GUI win-

dows, C, the handles of C are sent by Windows to the hook procedure. This handle is

then used to analyze the new window. Line 10: GUI windows that appear in response

to executing a widget are child windows of the window containing the widget. The

GUI tree being traversed is updated with this structural information. Lines 11–12:
The windows opened by the widget are traversed. Each window is analyzed by the

DFS-GUI-Recursive using its unique Windows handle.

The Windows implementation of the GUI ripper may miss some widgets during

the process of ripping. This happens when a widget does not have a Windows handle.

Widgets created by the application that bypass the Windows drawing functions usually

do not have handles and are missed by the GUI ripper. As described earlier, after

ripping is complete, the usability engineer may manually add the missed widgets.

16.4.2 Java Applications

Java applications do not have a handle and hence cannot be ripped using the Windows

ripper. The Java implementation (Java ripper) is used to rip the GUI structure of

applications developed using Java Swing. In such applications, GUI windows and

widgets are instances of Java classes. They are analyzed using Java APIs.

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 349

Lines 1–2: From the executable class file(s) of the software, the GUI ripper lo-

cates the file containing the main class. Using this class, it launches the software

as an object. The Java API java.awt.Frame.getFrames() is used to identify all visible

GUI windows (ripper’s and those belonging to the application). The ripper ignores the

windows belonging to itself. The remaining windows are the top-level windows of the

application. Lines 3–4: A recursive search is initiated for each top-level window of

the application using two threads. These are the Controller and Spy threads. The

Spy thread analyzes individual GUI windows and their widgets. The Controller
thread monitors the ripping process and identifies the window to be analyzed by the

Spy thread. Line 5–6: The Spy thread analyzes each window of the application

and at the end of the analysis disposes the window. The analysis of the window in-

volves extracting its constituent widgets and their properties. For this we used meth-

ods getComponents() of class Container and java.awt.Frames.getJMenuBar() of class

MenuBar. These methods are then used recursively to get all the widgets (buttons,

menu items) that belong to the window. From this array a set of clickable/executable

widgets are identified. This is achieved by selecting the widgets that belong to the

AbstractButton class family. Lines 7–8: For analyzing all the windows that belong to

the application they need to be invoked. A click event is executed on the executable

widgets. This is done by triggering the click event using the Java API doClick()
of class AbstractButton. For example, clicking the menu item New on an application

will launch New window. Lines 9–10: The new windows that are visible as a result of

event are detected using Java API method java.awt.Frame.getFrames(). This method

returns an array of windows that are tracked by the Controller thread. The GUI

tree being traversed is updated with this information.

Lines 11–12: With the help of the Controller and Spy threads the analysis is

recursively performed untill all the windows of the application are analyzed. Once all

the windows of the application have been analyzed, the Java Ripper generates the GUI

forest.

16.5 EMPIRICAL EVALUATION

This section empirically demonstrates that the ripping process is efficient in that it

is fast and requires very little resources and manual effort, and effective in that it

automatically produces GUI structures that are very close to complete. Examples of

metrics that can be derived directly or indirectly from the models are also evaluated

via a study involving several students.

16.5.1 Ripped Structures

The performance of the GUI rippers is evaluated on several subject applications, in-

cluding MS Windows and Java Swing applications. The MS Windows applications

include Microsoft WordPad, Yahoo Messenger, and NotePad. The Java applications

are part of an open-source office suite developed at the Department of Computer Sci-

ence of the University of Maryland by undergraduate students of the senior Software

www.manaraa.com

350 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Table 16.2 Time for ripping windows and Java applications

Engineering course. It is called TerpOffice2 and includes TerpWord (a small word-

processor), TerpCalc (a calculator), TerpPaint (a Java clone for MS Paint), and Terp-

SpreadSheet (a simple spreadsheet application).

The first step of the ripping process, i.e., extracting the GUI model from the GUI

application, was done fully automatically. It did not require any human intervention.

As expected, some GUI windows were missed by the ripper. These windows were

identified manually; the ripper automatically ripped and added them at the appropriate

place in the GUI forest.

Table 16.2 shows the results of ripping the applications. The time taken to rip

Java applications is significantly more than Windows applications, although the total

time in almost all cases is less than a minute. The time taken to rip an application is

directly proportional to the number of windows it contains. This is because rendering

windows is a time-consuming process. For example, clicking File → Open causes a

delay launching the FileOpen dialog.

Note that the ripper was able to extract a large fraction of the total number of

windows in all applications. Very few windows were missed that had to be manually

added later. This process took several minutes. The size of the resulting structures is

also shown.

16.5.2 Aid to Usability Evaluation

This study consisted of two parts. The first part involved human subjects (15 under-

graduade/graduate students), who evaluated the subject applications manually. The

second part was to develop metrics for the GUI ripper to evaluate the usability auto-

matically.

All the students were very familiar with all applications. They were asked to note

down why they felt that some applications were (more) usable than others. The results

showed that (1) most applications were easy to use since at most four windows had

to be opened simultaneously to perform a task, (2) TerpCalc was the easiest to use

because it gave the maximum flexibility of use, (3) TerpPaint was complex since it

2http://www.cs.umd.edu/users/atif/TerpOffice

Application
Rip Time

(Sec)

Ripped

Windows

Missed

Windows

Manual

Effort (mins)
Size (KB)

TerpCalc 29 4 0 5 15.1

TerpPaint 42 7 3 7 24.5

TerpWord 40 10 2 6 53.8

TerpSpreadSheet 89 7 1 7 72.8

WordPad 5 22 2 8 148

Notepad 6 14 2 7 90

Yahoo Messenger 6 18 4 10 159

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 351

Applications Nodes Edges
Max

Depth

Max
Children
per Node

Avg.
Widgets/
Window

Max.
Windows

Wordpad 19 18 4 2 19 3
Yahoo Messenger 20 19 3 2 22 3

Notepad 11 10 4 2 20 2
TerpPaint 8 7 2 1 30 1

TerpSpreadSheet 7 6 3 2 29 1
TerpWord 6 5 2 1 18 1
TerpCalc 4 3 2 1 13 1

Table 16.3 Structural attributes (GUI forest)

contained a large number of widgets per window, and (4) WordPad and Yahoo Mes-

senger had too many windows; although the users had used these two applications for

years, they were not familar with some of the features.

The human study suggested the computation of several metrics from the structural

and behavioral models. Some of the structural attributes are summarized in Table 16.3.

The results show that Yahoo Messenger and WordPad have the largest number of win-

dows whereas WordPad and NotePad GUIs have the largest depth. Note, however, that

the depth of all GUIs is less than 4. From each window, the user can go to at most two

more windows. The average widgets per window is approximately 20 except for Terp-

Paint which provides a color selection palette and a wide array of tools. The maximum

number of windows per modal dialog is 3. The average edges per node in TerpCalc’s

event-flow graphs was 35, showing increased flexibility.

The dynamic aspects of the GUIs are shown in Figure 16.4. The numbers are aver-

aged for event-flow graphs. The average number of nodes, i.e., events in each event-

flow graph, is small (less than 30). The average number of edges per node indicates

the number of widgets that can follow a given widget. This number was also small,

except for the calculator application, TerpCalc, which allows a lot of flexibility. The

average number of edges per event-flow graph was also small. Although informal,

there seems to be a strong correlation between the metrics computed automatically

by the GUI ripper and the observations of the human study. For example, the metric

“average edges per node” may be used as an indicator of GUI’s flexibility; the number

of nodes, depth, “widgets per window” may be used to measure the complexity of the

GUI.

16.6 RELATED WORK

Ivory and Hearst (Ivory and Hearst, 2001) and Hilbert and Redmiles (Hilbert and

Redmiles, 2000) provide excellent discussions of automated techniques for usability

evaluation. This section summarizes the efforts that have been made to recover models

of software automatically.

www.manaraa.com

352 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Applications
Avg.

Nodes
Avg.

Edges/Node
Avg.

Edges
Wordpad 26 17 908

Yahoo Messenger 23 14 780
Notepad 20 14 367

TerpPaint 28 22 1319
TerpSheet 25 19 583
TerpWord 23 17 464
TerpCalc 13 35 1676

Table 16.4 Usability attributes for event-flow

Reverse engineering has been used to generate representations of software appli-

cations. One popular representation is UML (Unified Modeling Language).3 There

are a number of reverse engineering tools available that make use of this represen-

tation. One such tool is Reveal (Matzko et al., 2002) that constructs a UML class

diagram representation by parsing the input program’s source code. Similarly other

tools such as Rational Rose4 and Together ControlCenter5 generate class diagrams

from the source code. Our GUI ripper is different from these tools in that it uses the

executable software to generate the representation, not the source code.

Moore (Moore, 1996) describes experiences with manual reverse engineering of

legacy applications to build a model of the user interface functionality. A technique

to partially automate this process is also outlined. The results show that a language-

independent set of rules can be used to detect user interface components from legacy

code. Developing such rules is a nontrivial task, especially for the type of information

that we need for usability evaluation.

Systä has used reverse engineering to study and analyze the runtime behavior of

Java software (Systä, 2001). Event trace information is generated as a result of run-

ning the target software under a debugger. The event trace, represented as scenario

diagrams, is given as an input to a prototype tool SCED (Koskimies et al., 1998) that

outputs state diagrams. The state diagrams can be used to examine the overall behavior

of a desired class, object, or method.

16.7 CONCLUSIONS AND FUTURE WORK

Usability evaluation of software that have a GUI has become extremely important as

GUIs become increasingly complex and popular. Usability evaluation may either be

done manually or automatically from a model of the software. Experience with GUIs

has shown that such models are very expensive to create manually and software spec-

3http://www.uml.org
4 http://www.rational.com
5http://www.togethersoft.com

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 353

ifications are rarely available in a form to derive these models automatically. A new

technique called GUI ripping to obtain models of the GUI’s structure and execution

behavior automatically was presented. The GUI’s structure was represented as a GUI
forest and its execution behavior as event-flow graphs and an integration tree. The

GUI ripping process, which is applied to the executing software, was described. The

process opens all the software’s windows automatically and extracts all their widgets,

properties, and values. The execution model of the GUI was obtained by using a clas-

sification of the GUI’s events. Once the extracted information is verified by a usability

engineer, it is used for automatic usability evaluation. Empirical evaluations showed

that this approach requires very little human intervention. Examples of metrics that

may be used for usability evaluation were presented.

High-priority future work includes a more comprehensive usability study coupled

with the definition of several new usability metrics. Implementation of the GUI ripper

will be extended to handle more MS Windows GUIs, Unix, and Web applications. The

integration of the GUI ripper with SHERLOCK will also be explored.

References

Baker, K., Greenberg, S., and Gutwin, C. (2002). Empirical development of a heuristic

evaluation methodology for shared workspace groupware. In Proceedings of the
2002 ACM conference on Computer supported cooperative work, pages 96–105.

ACM Press.

Brinck, T. and Hofer, E. (2002). Automatically evaluating the usability of websites.

In CHI ’02 Extended Abstracts on Human Factors in Computer Systems, pages

906–907. ACM Press.

Byrne, M. D., Wood, S. D., Foley, J. D., Kieras, D. E., , and Sukaviriya, P. N. (1994).

Automating interface evaluation. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 232–237.

Castillo, J. C., Hartson, H. R., and Hix, D. (1998). Remote usability evaluation: can

users report their own critical incidents? In CHI 98 conference summary on Human
factors in computing systems, pages 253–254. ACM Press.

Dix, A., Finlay, J., Abowd, G., and Beale, R. (2002-03-19). Human computer interac-

tion (booksite).

Dwyer, M. B., Carr, V., and Hines, L. (1997). Model checking graphical user inter-

faces using abstractions. In Jazayeri, M. and Schauer, H., editors, Proceedings of
the Sixth European Software Engineering Conference (ESEC/FSE 97), pages 244–

261. Springer–Verlag.

Hilbert, D. M. and Redmiles, D. F. (2000). Extracting usability information from user

interface events. ACM Computing Surveys, 32(4):384–421.

Ivory, M. Y. and Hearst, M. A. (2001). The state of the art in automating usability

evaluation of user interfaces. ACM Comput. Surv., 33(4):470–516.

John, B. E. (1996). Evaluating usability evaluation techniques. ACM Computing Sur-
veys, 33(4):139.

Kieras, D. E., Wood, S. D., Abotel, K., and Hornof, A. (1995). GLEAN: a computer-

based tool for rapid GOMS model usability evaluation of user interface designs. In

www.manaraa.com

354 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Proceedings of the 8th Annual ACM Symposium on User interface and Software
Technology, pages 91–100. ACM Press.

Koskimies, K., Männistö, T., Systä, T., and Tuomi, J. (1998). Automated support for

modeling OO software. IEEE Software, 15:87–94.

Mahajan, R. and Shneiderman, B. (1996). Visual and textual consistency checking

tools for graphical user interfaces. Technical Report CS-TR-3639, University of

Maryland, College Park.

Marsh, T. (1999). Evaluation of virtual reality systems for usability. In CHI ’99 Ex-
tended Abstracts on Human Factors in Computer Systems, pages 61–62. ACM

Press.

Matzko, S., Clarke, P. J., Power, J. F., and Monahan, R. (2002). Reveal: A tool to

reverse engineer class diagrams. In Proceedings of the Conference in Research and
Practice in Information Technology, pages 13–21.

Memon, A. M. (2001). A Comprehensive Framework for Testing Graphical User In-
terfaces. Ph.D. thesis, Department of Computer Science, University of Pittsburgh.

Memon, A. M. (2002). GUI testing: Pitfalls and process. IEEE Computer, 35(8):90–

91.

Memon, A. M. (2003). Advances in GUI testing. In Zelkowitz, M. V., editor, Advances
in Computers, 58:149–201. Academic Press.

Memon, A. M., Banerjee, I., Hashmi, N., and Nagarajan, A. (2003). DART: A frame-

work for regression testing nightly/daily builds of GUI applications. In Proceedings
of the International Conference on Software Maintenance 2003.

Memon, A. M., Pollack, M. E., and Soffa, M. L. (1999). Using a goal-driven approach

to generate test cases for GUIs. In Proceedings of the 21st International Conference
on Software Engineering, pages 257–266. ACM Press.

Memon, A. M., Pollack, M. E., and Soffa, M. L. (2001a). Hierarchical GUI test case

generation using automated planning. IEEE Transactions on Software Engineering,

27(2):144–155.

Memon, A. M., Soffa, M. L., and Pollack, M. E. (2001b). Coverage criteria for GUI

testing. In Proceedings of the 8th European Software Engineering Conference
(ESEC, pages 256–267.

Moore, M. M. (1996). Rule-based detection for reverse engineering user interfaces.

In Proceedings of the Third Working Conference on Reverse Engineering, pages

42–48. IEEE.

Morley, S. (1998). Digital talking books on a PC: a usability evaluation of the pro-

totype DAISY playback software. In Proceedings of the Third International ACM
Conference on Assistive Technologies, pages 157–164. ACM Press.

Nielsen, J. (1993). Usability Engineering. Boston, MA: Academic Press.

Nielsen, J. (1994). Heuristic evaluation. In Nielsen, J. and Mack, R. L., editors, Us-
ability Inspection Methods. New York: John Wiley.

Nielsen, J. and Molich, R. (1990). Heuristic evaluation of user interfaces. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, pages

249–256. ACM Press.

Perlman, G. (1996). Practical usability evaluation. In Conference Companion on Hu-
man Factors in Computing Systems, pages 348–349. ACM Press.

www.manaraa.com

REVERSE ENGINEERING FOR USABILITY EVALUATION 355

Pinelle, D. and Gutwin, C. (2002). Groupware walkthrough: adding context to group-

ware usability evaluation. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 455–462. ACM Press.

Rohn, J. A., Spool, J., Ektare, M., Koyani, S., Muller, M., and Redish, J. (2002). Us-

ability in practice: alternatives to formative evaluations-evolution and revolution.

In CHI ’02 Extended Abstracts on Human Factors in Computer Systems, pages

891–897. ACM Press.

Systä, T. (2001). dynamic reverse engineering of java software. Technical report, Uni-

versity of Tampere, Box 607, 33101 Tampere, Finland.

Winckler, M.A. Carla, M.D.S., and Valdeni de Lima, J. (2000). Usability remote eval-

uation for WWW, CHI’00 extended abstracts on Human factors in computer sys-

tems, pages 131–132.

Wixon, D. (2003). Evaluating usability methods: why the current literature fails the

practitioner. Interactions, 10(4):28–34.

www.manaraa.com

17 TASK MODELS AND SYSTEM

MODELS AS A BRIDGE BETWEEN HCI

AND SOFTWARE ENGINEERING
David Navarre, Philippe Palanque, and Marco Winckler

LIIHS-IRIT, Université Paul Sabatier Toulouse 3

118, route de Narbonne,

31062 Toulouse Cedex, France

navarre, palanque, winckler@irit.fr

Abstract. This chapter claims that task models per se do not contain sufficient and

necessary information to permit automatic generation of interactive systems. Beyond

this, we claim that they must not contain sufficient and necessary information oth-

erwise they could no longer be considered as task models. On the contrary we pro-

pose a way of exploiting in a synergistic way task models with other models to be

built during the development process. This chapter presents a set of tools supporting

the development of interactive systems using two different notations. One of these

notations called ConcurTaskTree (CTT) is used for task modeling. The other nota-

tion called Interactive Cooperative Objects (ICO) is used for system modeling. Even

though these two kinds of models represent two different views of the same world (a

user interacting with an interactive system), they are built by different people (human

factors specialist for the task models and software engineer for the system models)

and are used independently. The aim of this chapter is to propose the use of scenarios

as a bridge between these two views. On the task modeling side, scenarios are seen as

a possible trace of user’s activity. On the system side, scenarios are seen as a trace of

357

www.manaraa.com

358 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

user’s actions. This generic approach is presented on a case study in the domain of Air

Traffic Control. As both CTT and ICO notations are tool supported (environments are

respectively CTTE and PetShop) an integration tool based on this notion of scenarios

is presented. Its use on the selected case study is also presented in detail.

17.1 INTRODUCTION

In the Human-Computer Interaction domain (HCI), when dealing with interactive sys-

tems it is widely agreed upon that user information has to be taken into account and

that this must be done through task analysis and task modeling. During the design pro-

cess of interactive systems, user goals have to be analyzed as part of the specification

phase, while task analysis is conducted during the design phase.

Classically formal notations are meant to guarantee certain quality of the models.

For instance, they are used to ensure completeness or non-ambiguity of the descrip-

tions. We try to demonstrate in the following that they can also be used to ensure

consistency among the various models that are build in the various phases of the de-

velopment process of an interactive system. As models built using formal notations

are non-ambiguous, they can be analyzed automatically by inspection tools.

Even though formal notations are used for task modeling, it is not possible to gen-

erate, from the task models, the interactive application supporting those tasks. The

justification of this claim comes from the following argument we develop hereafter:

“it is impossible because there is not enough information in the task models to gener-

ate code.” It is possible to extend the task models with additional information, but in

that case we claim that the resulting model is not anymore a task model but a merging

of both a task model and a model of the behavior of the system. Another alternative

is to use generic information about interactive application and to use them in order to

generate the code of the final interactive system. In that case we claim that the ap-

plication generated is very stereotyped and that this is only possible for a very small

number of applications.

We take as an example the Trident project (Bodart et al., 1994) that was dedicated to

the generation of form-based interactive applications from task models and data mod-

els. Even for this kind of “simple” interactive application a data model was mandatory

and was actually the core of the generation process (the task model was only used for

the dialogue part of the application and the structure of the various windows of the

application). Instead of generating the code from a task model, we propose to use

the task model as a means for checking that the system model is compliant with it

(Palanque and Bastide, 1997).

In the chapter, after a short discussion of related works, we recall the basic concepts

of the approaches and tools that we aim to integrate. Then, we discuss the architecture

of the solution identified. An example of application of the integrated set of tools

is discussed before drawing some concluding remarks. The case study presented is

extracted from the European Project MEFISTO which is a long-term research project

dedicated to the definition and use of formal method for the design of safety-critical

interactive systems. In particular, the project has focused on the air traffic control

application domain from which this case study has been drawn.

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 359

17.2 RELATED WORK

The use of models has often been criticized for the effort required to develop them

and the difficulties in using the information that they contain to support design and

evaluation. When introducing a new notation, after having carefully evaluated the

opportunity and the needs of doing it, the first concern should be providing users also

with tools making the use of such notation more effective and easier. The problem is

that getting used to another notation involves a significant amount of effort and time

spent by the potential users in order to understand features, semantics, and meaning

of the notation’s conventions. In addition, even when users have understood the main

features of the notation, there is still the risk that their effort might be wasted if they

find that using it is difficult and not really feasible or appropriate for intensive use and

real case studies.

Indeed, one of the strengths of a notation is the possibility of supporting it through

automatic tools. Developing a formal model can be a long process, which requires a

considerable effort. Automatic tools can ease such activity and can help designers to

get information from the models, which is useful for supporting the design cycle.

Some research prototype was developed years ago to show the feasibility of the de-

velopment of such tools, but the first prototypes were rather limited in terms of func-

tionality and usable mainly by the people who developed them. Only in recent years

have some more engineered tools been developed, and in some cases they are also

publicly available. For example, Euterpe (van Welie et al., 1998) is a tool supporting

GTA (Groupware Task Analysis) where task models are developed in the horizontal

dimension with different panels to edit task, objects, actors. A simulator of task mod-

els of single user applications has been given with the support of an object-oriented

modeling language (Biere et al., 1999).

Mobi-D (Puerta and Eisenstein, 1999) and Trident (Bodart et al., 1994) are exam-

ples of tools aiming to use information contained in models to support design and

development of user interfaces. In particular, in Mobi-D the designer can choose dif-

ferent strategies in using the information contained in task and domain model to derive

the user interface design.

In our work we envision a solution based on the use of two tools (CTTE and Pet-

Shop) developed to support two different types of models. The former is a tool for task

modeling supporting a unique set of functionality (simulation of models of coopera-

tive applications, comparison of task models, support of use of scenarios to develop

task models, etc). The latter supports system models described using Petri nets in an

object-oriented environment. PetShop is able to support editing of a Petri net control-

ling the dialogues of a user interface even at runtime thus allowing dynamic change

of its behavior. Their integration allows thorough support to designers since early

conceptual design until evaluation of a full prototype.

17.3 WHY A TASK MODEL IS NOT ENOUGH

Tasks correspond to actions that are to be performed by a user in order to reach a goal.

The relationships between tasks and goals are clear as described in Norman’s theory of

www.manaraa.com

360 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

action (Norman, 1986). Indeed, each time a task is performed the user has to compare

the perceivable state of the system with respect to the goal.

Various notations are currently available for modeling tasks. They range from very

abstract to concrete. The representation of an abstract task model requires a declar-

ative abstract notation. The notation must be able to describe actions and qualitative

temporal relationships among actions. A notation belonging to this category is Con-

curTaskTree (Lecerof and Paternò, 1998). A concrete task model requires a procedural

notation describing both quantitative and qualitative temporal relationships among ac-

tions but also to represent the data needed in order to perform the actions (see for

instance Palanque et al., 1995).

17.3.1 Example: The Game of 15

We consider a simple (and somewhat silly) game that requires two players. The rule

is as follows: the numbers from 1 to 9 are initially available to any of the two play-

ers. The players play in turn. At each turn, the player chooses one of the remaining

numbers (thus making it unavailable). If the player possesses three numbers that add

up to exactly 15, she wins the game. You might want to try this game with one of

your colleagues, without the help of any external tool (paper, pencil, or other). It turns

out, rather unexpectedly, that this game is almost impossible to play this way, because

the user task is extremely complicated, as we will show by constructing a task model

for it. We will later show that, although you may not be aware of it, you have almost

certainly played this game.

17.3.2 An Abstract Task Model

Both players share a common goal: “win the game”, and subgoal: “if I cannot win,

don’t let the other player win.” The task of someone playing the game of 15 can be

described as follows:

I wait for my turn.

When my turn comes, I choose a number among the remaining numbers (here, I

must apply some form of strategy to decide which number to take). Within this

activity the player might also check whether or not the other player is about to

win.

I then evaluate if I win the game. This operation is especially difficult, because

I need to compute all combinations of 3 numbers among the numbers I have

already chosen, and decide if this combination adds up to 15.

If I do not win, I let the other player take her turn.

This task requires some “background activities”: remember the numbers I have

already taken, remember the remaining numbers (or alternatively remember the num-

bers taken by my opponent), and remember who is next. These background activities

are very demanding to the short-term memory of the player, and contribute to making

it actually impossible to play without adequate support.

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 361

17.3.3 A Concrete Task Model

Figure 17.1 presents a concrete task model for playing the game of 15.

Figure 17.1 Petri net representation of the concrete task for playing the game of 15

Several simpler models could be built for instance including random selection of

numbers. We have already considered these aspects in a previous paper (Moher et al.,

1996) and we focus our discussion here on the more efficient task models. In this Petri

net model of tasks we can note that:

Information is stored in places thus representing what the user has to remember.

Actions are represented by transitions; as there is no support all the actions

are to be performed directly by the user. Two transitions feature preconditions

(namely, transitions “Not Success” and “Success”), which means that the tran-

sition can occur only if the precondition is true. Transition “Not Success” is

related to place “Number Already Chosen” by means of inhibitor arcs. This

type of arc has an effect on the preconditions i.e., the transition “Not Success”

can occur only if there is no combination in the place “Number Already Cho-
sen” that matches the precondition.

17.4 A CLASSICAL SYSTEM MODEL

Figure 17.2 presents an interactive system for playing the game of 15. The behavior

of this system is modeled using the same formalism as for task model. However, in

order to model an interactive system more information needs to be represented such

as activation (how the user can act on the interactors) and rendering (how the system

renders information to the user).

Figure 17.3 presents the behavior part of the system. The proposed system fully

supports all the actions that were left to the user in the unsupported game. For this

www.manaraa.com

362 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 17.2 Presentation part of a basic system

reason, the behavior of the system is very close to the concrete task model presented

in Figure 17.1.

Figure 17.3 Behavior of the basic system for the game of 15

Some places are grayed-out, which means that there is some kind of rendering asso-

ciated to them (not detailed here but for instance when a token enters place “Success”
the player who won is displayed on the user interface). Transition “ClickIcon(x)” is

grayed-out, which means that this transition is related to the user interface and respon-

sible for triggering transitions according to user’s actions on the interactors.

17.5 THE IMPROVED SYSTEM MODEL

Another system model for playing the game is presented in Figure 17.4c. This system

model is based on magic squares and Tic-Tac-Toe games.

A magic square (see Figure 17.4a) is made up of a set of cells each cell being filled

in by a number. A 3× 3 magic square is made up of 9 cells and the valid numbers are

from 1 to 9. A specific feature of magic squares is that the sum of the numbers in each

row equals the sum of the numbers in each column equals the sum of the numbers in

each diagonal. In the case of a 3 × 3 magic square, the sum is always 15.

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 363

Figure 17.4 Examples for the improved system model

The user interface for playing the game is thus exactly the same as the one for

playing Tic-Tac-Toe (see Figure 17.4b). This interface supports very well most actions

in the task model:

It shows the numbers still available (the empty cells).

It shows the numbers already chosen for each player (for instance a cross for

player 1 and a circle for player 2).

It shows if a player has won (a row, a column or a diagonal is filled-up with the

same symbol).

From a strategy point of view, this user interface provides very relevant infor-

mation:

– It shows if a player is about to win and this might influence the behavior

of the other player.

– It shows that some numbers are more important than others (for instance

number 5 in the center of the magic square).

The paper version of the Tic-Tac-Toe does not support turn taking between the

players but this is easily done using a computer-based version of the game. Now

Figure 17.3 also can be used to explain the behavior part of the system model of the

Tic-Tac-Toe application. This system model is the same as for the previous system.

The question is then why we call this an improved system model? If you try to play the

game using one system after the other, it is immediately noticeable that the second one

is much easier that the first one. The answer lies in the concrete task model presented

in Figure 17.1. This model features a transition “Choose a Number” representing the

selection made by a player from the set of remaining numbers. This user activity is

highly demanding from a cognitive point of view, as it requires strategic computation.

17.6 SCENARIOS AS A BRIDGE BETWEEN TASKS AND SYSTEM

MODELS

Various models have been proposed in the Human-Computer Interaction field. When

designing and developing interactive software systems, task and system models are

www.manaraa.com

364 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

particularly important. In HCI—both industrial and academic communities—there

is a wide agreement on the relevance of task models as they allow expressing the

intentions of the users and the activities they should perform to reach their goals. These

models also allow designers to develop an integrated description of both functional

and interactive aspects. Within the development lifecycle of an application the task-

modeling phase is supposed to be performed after having gathered information on the

application domain and an informal task analysis phase. The result of the latter one

is an informal list of tasks that have been identified as relevant for the application

domain.

After this step, designers should develop a task model that forces them to clarify

many aspects related to tasks and their relationships. In some cases task models are

first developed and then used to drive the system design. In other cases designers have

to address an existing system and need to develop a task model to better understand

and evaluate its behavior (Palanque and Bastide, 1997).

System models describe important aspects of the user interface. In this work we

pay particular attention to the dialogue supported by the system: how user actions

and system feedback can be sequenced. Scenarios (Carroll, 1995) are a well-known

technique in the human-computer interaction area. They provide a description of one

specific use of a given system, in a given context. Their limited scope is their strength

because they can easily highlight some specific aspect and are easily understood and

remembered. Thus, they can also be considered as a useful tool to compare different

models and analyze their relationships.

One point is that we can quite easily check if the task models fulfill the expected

requirements, and we can check if the system model matches the planned behavior.

However, what cannot be missed is checking if both models are consistent, which

means if both specifications really refer to the same system. This requires checking if

for each user action assumed in the system model there is an actual counterpart in the

task model, and each system output provided to the user has been foreseen in the task

model specification.

Another relevant point is that these two models can be specified by different people

and in distinct moments of the design cycle of the user interface development process.

Indeed, especially in real case studies it happens that sometimes the task models will

be performed at first, sometimes they might be specified after the system model has

already been obtained. So, we need an approach that does not have specific constraints

and requirements on what is assumed to be available at a certain phase of the system

design, as they can be equally used efficiently in both cases.

In our approach we decided to check this correspondence and completeness by

means of abstract scenarios, which can be the common “lingua franca” useful to ensure

and show whetehr there is an actual correspondence between what has been specified

within the task models and what has been specified in the system model. The idea is to

focus attention on specific examples of usage either on the system side or on the task

side and to check if on these simple examples of the system use such correspondence

exists.

We used the ConcurTaskTrees notation for specifying tasks. This notation provides

the users with the possibility to explicitly express how the allocation of the different

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 365

tasks has been assumed in the system design: on the user alone (user tasks), on the

application alone (application tasks), on the interaction between the user and the ap-

plication (interactive tasks), or if the activity is too general to be specifically allocated

on each of them (abstract task). This explicit mention of the allocation of tasks is

one of aspects which characterises the notation as very supportive and suitable to ex-

press the behavior of interactive systems, because for each task it is possible to define

from which part of the system (user, application, interaction between them) the task is

assumed to be undertaken.

This aspect is effective especially when both comparison and integration with dif-

ferent models have to be carried out, as in our case. The possibility of explicitly

mentioning in the task models when a system support is requested on the user inter-

face allows comparison and cross-check if the specification of the task models reflects

and is adequately supported by the correspondent system model. More specifically,

the points that have to be carefully checked in the task model specification are the

application tasks, with which has been emphasised that at a certain point during a user

session a specific behavior of the system is expected.

This behavior can be expressed for instance in terms of a specific feedback of an

action the user has performed while interacting with the system, or in terms of a result

that the system has produced after some elaboration, or in terms of availability of

a specific input which is needed by users in order to perform their tasks. All those

possibilities have to be carefully supported especially if the considered domain is vast

and complex, such as in the air traffic control domain which is considered in our case

study. Such a case study is composed of a number of entities maintaining a complex

relationship structure, because of their internal structure or because of the dynamic

behavior they follow, which has to be appropriately presented to the users (air traffic

controllers).

17.7 A CASE STUDY

Our case study is extracted from the European Project MEFISTO which is a long-

term research project dedicated to the definition and use of formal method for the

design of safety-critical interactive systems. This project is focused on the air traffic

control application domain from which this case study comes. This section presents

the various models built in order to represent both predictive user activities and the

system under consideration. Section 17.7.2 presents the use of CTT and its support

environment for tasks modeling and simulation as well as the extraction of scenarios

from the task models. Section 17.7.3 presents the use of the ICO formalism and its

support environment PetShop for modeling and executing interactive systems.

17.7.1 Informal Description of the Case Study

This example comes from an En-route Air Traffic Control application focusing on

the impact of data-link technologies in the ATC field. Using such applications air

traffic controllers can direct pilots in an airspace sector. The radar image is shown

in Figure 17.5. On the radar image each plane is represented by a graphical element

providing air traffic controllers with useful information for handling air traffic in a

www.manaraa.com

366 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

sector. In the simplified version of the radar image each graphical representation of

a plane is made up of three components: (a) a label (providing the plane ID, speed,

cleared flight level, etc.), (b) a dot (representing the current position of the plane in

the sector), and (c) a speed vector (a graphical line from the dot which represents the

envisioned position of the plane in 3 minutes).

An Air Traffic Control is in charge simulating the arrival of new planes in the sector

while in reality they would be instantiated on the user interface by calls from the

functional core of the application processing information provided by physical radars.

The user can interactively control the simulator triggering the arrival of a plane by

clicking on a NewPlane button. The ATC simulator user interface can be found on

the right-hand side of Figure 17.28. On the top of the window the button New Plane

allows for introducing a new plane in the sector.

Initially the radar image is empty. Each time a new plane is randomly generated it

is graphically represented on the radar image. The user can select planes by clicking

on their graphical representation. The selection of a plane will change its state to the

“Assume” state meaning that the air traffic controller is now in charge of the plane.

Assuming the plane changes its graphical representation as can be seen on the left-

hand side of Figure 17.5. Once a plane is assumed, the controller can send clearances

(i.e., order to this plane). In this case study we only consider the change of frequency

functionality corresponding to the controller’s activity of transferring a plane to an ad-

jacent sector. When the plane is assumed the corresponding button “FREQ” becomes

available (see plane 1123 on the left-hand side of Figure 17.5). Clicking on this but-

ton opens a menu allowing the controller to select the new value for the frequency as

shown on the bottom of Figure 17.28.

17.7.2 The ConcurTaskTrees Notation and Environment Used in the Case

Study

There are various approaches that aim to specify tasks. They differ in aspects such

as the type of formalism they use, the type of knowledge they capture, and how they

support the design and development of interactive systems. In this chapter we consider

task models that have been represented using the ConcurTaskTrees (CTT) notation

(Paternò, 1999). In CTT, activities are described at different abstraction levels in a

hierarchical manner, represented graphically in a tree-like format (see Figure 17.6 for

an example).

In contrast to previous approaches, such as Hierarchical Task Analysis, Concur-

TaskTrees provides a rich set of operators, with precise meaning, able to describe

many possible temporal relationships (concurrency, interruption, disabling, iteration,

and so on). This allows designers to obtain concise representations describing many

possible evolutions over a user session. The notation also gives the possibility of using

icons or geometrical shapes to indicate how the performance of the tasks is allocated.

For each task it is possible to provide additional information including the objects

manipulated (for both the user interface and the application) and attributes such as

frequency. Automatic tools are needed to make the development and analysis of such

task models easier and more efficient. In addition, as in the design of complex cooper-

ative environments more and more attention is being paid to the horizontal mechanism

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 367

Figure 17.5 A screen-shot of the radar screen with planes (left-hand side, one of the

planes 1123 is assumed)

Figure 17.6 The abstract task model of case study using CTT notation

www.manaraa.com

368 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

of coordination between different roles, and CTT allows designers to specify explic-

itly how the cooperation among different users is performed. We give hereafter an

overview of the main features of the notation by commenting on two excerpts of spec-

ification from the considered case study.

The activity of controlling a plane (“Control a plane”) is an iterative task (see the

iterative operator *) which consists of either assuming a plane (“Assume a plane”
task) or giving clearance to the plane (“Give clearance” task). These two activities

are mutually exclusive, as you can see from the choice operator []. The activity of

assuming a plane is composed of deciding which plane has to be assumed (Select a

plane task, the associated icon emphasizes the cognitive nature of this so-called user

task). Once this activity has been performed it is possible to select the button related

to the plan (see the Enabling operator with information passing []�, which highlights

that only after the first activity has been carried out and delivered information to the

second task, the latter can be performed). In addition, the Click plane task requires an

explicit action of the controller on an element of the user interface so it belongs to the

category of interaction tasks and the appropriate icon has been used. The “Give clear-
ance” task is composed of two different activities: “Give Aborted Clearance” and

“Give Validated Clearance”, depending on whether the clearance has been aborted

or not. Each of these two activities is a high-level one, whose performance cannot be

entirely allocated either to the application alone, or to the user alone, or to an interac-

tion between the user and the system: this is expressed by using the cloud-shape icon

associated to the so-called abstract tasks. The detailed specification of each of these

two tasks is described in Figure 17.7.

Figure 17.7 The concrete and detailed task model of the case study

The first subtask of “Give Aborted Clearance” task is a controller’s cognitive ac-

tivity of selecting a plane (“Select a plane AC”). It is followed by an interactive ac-

tivity for selecting the button related to the frequency (“Click FREQ”). This triggers

the opening of a correspondent menu on the controller’s user interface (i.e., “Open
Menu”; notice the special icon representing an application task), then the controller

can think about a specific frequency (in the task model the possibility of performing

or not performing this task is expressed by the option operator expressed by squared

brackets [T], see the task “Select Frequency”). Then, controllers choose the appropri-

ate value of frequency within the user interface (“Click Frequency” task, which can

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 369

be performed more than one time since it features the iterative operator *) until they

decide to interrupt the entire activity (see the “Disabling” operator ”[>” which refers

to the possibility for the second task to disable the first one), by selecting the related

object in the user interface (“Abort” task).

In case of a clearance that is really sent to the pilot (“Give Validated Clearance”),

the sequence of actions is mainly the same, apart from the last one (“Send” task), with

which the controller sends the clearance to the pilot.

A set of tools, namely, CTTE, have been developed to specify task models for co-

operative applications in ConcurTaskTrees, to analyze their content and to generate

corresponding user interfaces. The CTTE tool has various features supporting editing

of task models. It can automatically check the syntax of the specification, give statis-

tical information, compare task models, simulate their behavior and give examples of

scenarios of use. The CTTE editing environment is intended as a computer-based sup-

port tool for CTT, and is freely downloadable from http://giove.cnuce.cnr.it/ctte.html.

With this tool, it becomes very intuitive and effective to exploit the graphical and

hierarchical nature (tree-like format) features of the notation by providing all the nec-

essary operations (cut, paste, insert) that are usually possible on tree-like structures.

In addition, even the specific layout selected for the tool conveys further useful in-

formation about the notation. For instance, the relative positions of the user interface

objects presenting the operators within the tool convey information about their prior-

ities (sorted top to bottom from highest to lowest priority operator). In addition, it is

possible to recall the meaning of any operator by means of useful tool tips available

within the environment (such feature was found very useful especially by users who

are rather new to the notation and unable to recall the meaning of the operators). Fi-

nally, the ability to structure the specification with some tasks that can be referenced

in both the single-user and cooperative parts well supported by the environment be-

cause it allows easy switching between these different views. These simple examples,

relative to the case of the CTT notation, serve to highlight the extent to which the use

of a suitable tool can support users while building the task specifications.

Figure 17.8 presents a screenshot of the simulator provided by CTTE tool. When

this tool is activated, in the left-hand part of the window it is possible to have high-

lighted (by means of a different colour) all the tasks that are active at any moment

of the simulation. This means all the tasks that can be performed at a specific time,

depending on the tasks that have been previously carried out. The execution of a task

can be performed either within the graphical panel on the left (a task can be executed

by double-clicking on the related task icon), or by selecting the task name within the

list of “Enabled Tasks” panel on the right and then selecting the “Next task to be per-
formed” button. In addition, in the “Scenario to be performed” list it is possible to

have the list of tasks which have been carried out until now: this sequence of tasks can

be saved in a separate file and executed later on.

As an example of scenario we have chosen to extract from the task model of Fig-

ure 17.7 the following trace of low-level tasks (this scenario has been extracted using

CTTE and is displayed on the right-hand side of Figure 17.8):

The controller selects (in her head) one of the planes not assumed yet (this is a

user task)

www.manaraa.com

370 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 17.8 CTTE for extracting scenarios

The controller clicks on this plane to assume it (this is an interactive task)

The controller decides (in her head) to change the current frequency of one of

the flights assumed (this is a user task)

The controller clicks on the label FREQ to open the data-link menu (this is an

interactive task)

The controller selects (in her head) a new frequency for this plane (this is a user

task)

The controller clicks on one of the available frequencies for this plane (this is

an interactive task)

The controller clicks on the SEND button to send the new frequency to the

aircraft (this is an interactive task)

17.7.3 ICOs and PetShop used in the Case Study

System modeling is done using the ICO formalism and its development environment

called PetShop. Both of them are presented hereafter using the case study as support.

The ICO formalism is the continuation of early work on dialogue modeling using

high-level Petri nets (Bastide and Palanque, 1990). The various components of the

formalism are introduced informally in subsection 17.7.3 and all of them are fully

exemplified on the case study in subsection 17.9. Section 17.7.3 presents the PetShop

environment and the design process it supports.

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 371

ICO Formalism. The Interactive Cooperative Objects (ICO) formalism is a for-

mal notation dedicated to the specification of interactive systems. ICOs use concepts

borrowed from the object-oriented approach (dynamic instantiation, classification, en-

capsulation, inheritance, client/server relationship) to describe the structural or static

aspects of systems, and use high-level Petri nets to describe their dynamic or behav-

ioral aspects. ICOs were originally devised for the modeling and implementation of

event-driven interfaces. An ICO model of a system is made up of several communi-

cating objects, where Petri nets describe both behavior of objects and communication

protocol between objects. In the ICO formalism, an object is an entity featuring four

components: behavior, services, state, and presentation.

Interface: The interface specifies at a syntactic level the services that a client object

can request from a server object that implements this interface. The interface details

the services supported and their signature: a list of parameters with their type and

parameter-passing mode, the type of the return value, the exceptions that may possi-

bly be raised during the processing of the service. For describing this interface we

use the CORBA-IDL language (OMG, 1990). An ICO offers a set of services that

define the interface (in the programming language meaning) offered by the object to

its environment. In the case of user-driven application, this environment may be either

the user or other objects of the application. The ICO formalism distinguishes between

services offered to the user (user services) from those services offered to other objects.

Behavior: The behavior of an ICO states how the object reacts to external stimuli

according to its inner state. This behavior is described by a high-level Petri net called

the Object Control Structure (ObCS) of the object. The state of an ICO is the dis-

tribution and the value of the tokens (called the marking) in the places of the ObCS.

This allows defining how the current state influences the availability of services, and

conversely how the performance of a service influences the state of the object.

Presentation: The Presentation of an object states its external look. It is made up

of three components: the widgets, the activation function, and the rendering function.

This Presentation is a structured set of widgets organized in a set of windows. The

user–system interaction will only take place through those widgets. Each user action

on a widget may trigger one of the ICO’s user services. The relation between user

services and widgets is fully stated by the activation function that associates to each

couple (widget, user action) the service to be triggered. The rendering function is in

charge of presenting information according to the state changes that occur. It is thus

related to the representation of states in the behavioral description i.e., places in the

high-level Petri net.

ICO are used to provide a formal description of the dynamic behavior of an inter-

active application. An ICO specification fully describes the potential interactions that

users may have with the application. The specification encompasses both the “input”

aspects of the interaction (i.e., how user actions impact on the inner state of the appli-

cation, and which actions are enabled at any given time) and its “output” aspects (i.e.,

when and how the application displays information that is relevant to the user). An

ICO specification is fully executable, which gives the possibility to prototype and test

quickly an application before it is fully implemented. The specification can also be

validated using analysis and proof tools developed within the Petri nets community.

www.manaraa.com

372 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

ICO Environment (PetShop). Figure 17.9 presents the general architecture

of PetShop. It is composed of a set of rectangles and documents-like shapes. The

button-like rectangles represent the functional modules of PetShop. The documents-

like shapes represent the models produced and used by the modules.

Figure 17.9 Tools available for designers in PetShop environment

Since this tool is not the main topic of the chapter its precise functioning is not

presented here. For a detailed description of PetShop features see Bastide et al., 1999.

Presentation of ICOs and PetShop on the Case Study. This subsection

only presents a subset of the set of classes and objects that have to be built in order

to fully implement the case study. The complete description of the case study can be

found in David et al. (2005)(David et al., 2005).

As presented in this chapter the case study is modeled as a set of three cooperating

classes: “MefistoPlaneManager”, “MefistoPlane” and “MefistoMenu”. These three

classes are fully-fledged hereafter.

The class “MefistoPlaneManager”. The class “MefistoPlaneManager” is in

charge of handling the set of planes in a sector. Each time a new plane arrives in

the sector the “MefistoPlaneManager” instantiates it from the class “MefistoPlanes”.

There is only one instance of this class at running time. The set of services offered by

this class is described in Figure 17.10.

Figure 17.10 IDL description of the class “MefistoPlaneManager”

interface MefistoPlaneManager {

void closePlane(in MefistoPlane p);

void terminatePlane(in MefistoPlane p);

void addPlane(in MefistoPlane p);

};

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 373

This IDL description (above) shows that the class offers three services dealing with

the managing of the planes in a sector: adding a plane, terminating a plane (when it

leaves a sector), and closing the menu of a plane.

Figure 17.11 ObCS description of the class “MefistoPlaneManager”

Figure 17.11 presents the behavior of the class and, according to the current state,

what services are available to the other objects of the application. The transition

“UserOpenPlane” has an input arc from place “AssumedPlanes” meaning that a con-

troller can only open a menu on a plane that has previously been assumed. The in-

hibitor arc between that transition and the place “OpenedPlanes” states that only one

plane at a time can have the data-link menu opened.

Figure 17.12 and 17.13 describe the presentation part of the ICO “MefistoPlane-
Manager”. From the rendering function it can be seen that this class only triggers

rendering through the class “MefistoPlane” as each time a new token enters in the

place Planes the graphical function Show is triggered on the corresponding plane.

The class “MefistoPlane”. The class “MefistoPlane” is also an ICO class.

Figure 17.14 shows its IDL description. Figure 17.15 describes the behavior of the

www.manaraa.com

374 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 17.12 Rendering function of the class “MefistoPlaneManager”

Figure 17.13 The activation function of the class “MefistoPlaneManager”

class “MefistoPlane”. The presentation part of “MefisoPlane” class is shown in Fig-

ure 17.16 while Figure 17.17 presents the rendering function. With respect to the class

“MefistoPlaneManager”, graphical information is added in order to describe how the

planes are rendered on the screen. Notice that this class does not feature an activation

function. This is due to the fact that all the user interaction on a plane takes place

through the “MefistoPlaneManager” class.

Figure 17.14 IDL description of the class “MefistoPlane”

The class “MefistoMenu”. This class is in charge of the interaction taking

place through the data-link menu that is opened by clicking on the button FREQ on

the plane label.

Similarly to the other classes, Figure 17.18 shows the set of services offered to the

other objects of the application. Figure 17.19 describes the corresponding behavior.

Figures 17.20, 17.21 and 17.22 give the presentation part of the class “MefistoPlane”.

Notice that some of the information given above is only required in order to pro-

vide full excitability of the models. However this description still lacks the code of

the functions given in Figure 17.20 and in Figure 17.16 for describing precisely the

graphical behavior of the classes. This is not given here due to space limitation, but a

complete demo of the case study is available.

interface MefistoPlane {

void open();

void close();

void assume();

void validate(in short x);

};

ObCS Element Feature Rendering method
Place Planes token <p> entered p.show()

Widget Event Service
Place Type
Planes Plane LabeClick userAssume

AssumedPlanes Plane ButtonClick userOpenMenu

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 375

Figure 17.15 ObCS of the class “MefistoPlane”

Figure 17.16 The presentation part of the class “MefistoPlane”

17.8 THE INTEGRATION OF THE MODELS: CTT-ICO

The integration framework we have followed takes full advantage of the specific tools

that we have developed initially in a separate manner. One advantage of this separation

public class WidgetPlane {

//Attributes

//A button to open the menu for the change of frequency

Button freqButton; //A label to display the name of the
plane

Label label; //Rendering methods

void show () { } //show plane

void showAssumed () { } //show plane as assumed

void showOpened () { } //show plane as opened

void showTerminated () { }//show plane as terminated

void setFreq(short x) { } //show the new frequency

}

www.manaraa.com

376 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 17.17 The rendering function of the class “MefistoPlane”

Figure 17.18 IDL description of the class “MefistoMenu”

Figure 17.19 ObCS of the class “MefistoMenu”

is that it allows for independent modification of the tools, provided that the interchange

format remains the same.

We have previously investigated the relationship between task and system models.

For instance in Palanque et al. (1995) we proposed a transformation mechanism for

translating UAN task descriptions into Petri nets and then checking whether this Petri

net description was compatible with system modeling also done using Petri nets. In

(Palanque et al., 1997) we presented the use of CTT for abstract task modeling and

high-level Petri nets for low-level task modeling. In that chapter the low level task

model was use in order to evaluate the “complexity” of the tasks to be performed, by

means of performance evaluation techniques available in Petri net theory.

ObCS Element Feature Rendering method
Place Assumed token entered showAssumed

Place Opened token entered showOpened

Place Terminated token entered showTerminated

Place Value token <x> entered setFreq(x)

interface MefistoMenu {

void open();

void close();

void send();

void setValue(in short x);

};

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 377

Figure 17.20 The presentation part of the class “MefistoMenu”

Figure 17.21 Rendering function of the class “MefistoMenu”

Figure 17.22 The activation function of the class “MefistoMenu”

17.8.1 CTT Environment

Parts 1 and 2 of Figure 17.23 highlight the outputs provided by the CTT environment

and processing. The CTT environment provides a set of tools for engineering task

models. For the purpose of integration we only use the interactive tool for editing the

tasks and the simulation tool for task models that allows scenario construction from

the task models. Thus the two main outputs are a set of task models and a set of

scenarios. These two sets are exploited in the following way:

A set of interaction tasks is extracted from a CTT model. This set represents a

set of manipulations that can be performed by the user on the system (part 1 of

Figure 17.23).

The set of scenarios is used as inputs (part 2 of Figure 17.23).

public class WidgetMenu {

//Attributes

//Button to validate or cancel the current choice for
frequency

Button sendButton, cancelButton ;

//A comboBox to show the set of possible frequency

ComboBox freqComboBox;

//Rendering methods

void show () { } //show menu as opened

void hide () { } //hide menu

}

Widget Event Service
Place Type
sendButton actionPerformed userSend

abortButton actionPerformed userCancel

freqComboBox select userSelectValue

ObCS Element Feature Rendering method
Place Opened token entered show()

Place Closed token entered hide()

www.manaraa.com

378 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Figure 17.23 The framework for CTTE – PetShop integration

17.8.2 ICO Environment

The outputs of the ICO environment and their processing are highlighted by parts 3

and 4 of Figure 17.23. From the ICO environment (PetShop) we only employ for the

integration the tool for editing the system model. It allows executing the system model

as follows:

From the ICO specification we extract a set of user services (part 3 of Fig-

ure 17.23).

From the ICO environment we use the prototype of the system modeled (part 4

of Figure 17.23).

A user service is a set of particular transitions that represents the functionalities offered

to the user by the system. These transitions are performed when and only when they

are fireable and the corresponding user actions are performed (which is represented by

the activation function in the ICO formalism).

The Correspondence Editor. The activities that are managed by the corre-

spondence editor correspond to parts 5 and 6 of Figure 17.23. The first component of

the correspondence editor relates interaction tasks in the task model to user services

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 379

in the system model (part 5 of Figure 17.23). When the task model is refined enough,

the leaves of the task tree represent low-level interaction on the artifacts. It is then

possible to relate those low-level interactive tasks to user action in the system model

that are represented, in the ICO formalism, by user services.

In order to check that this correspondence is valid we have developed a model

checker (part 6 of Figure 17.23). The properties checked by the model checker corre-

spond to the verification and validation phase in the development process. Validation

phase relate to the question “do we have modeled the right system?” while the veri-

fication phase address the question “do we have modeled the system right?”. In the

context of ICO-CTT integration for the verification phase the model checker addresses

the following two questions:

1. Are there at least as many user services in the ICO specification as interaction

tasks in the CTT model?

2. Are all the possible scenarios from the task model available in the system mod-

eled?

In the context of ICO-CTT integration for the validation phase the model checker

addresses the following two questions:

1. Are there more user services in the ICO specification than interaction tasks in

the CTT model?

2. Are there scenarios available in the system model that are not available in the

task model?

If the answer is yes for one of these two subrules, the system modeled offers more

functionalities than expected by the task model described with CTT. This leads to two

possible mistakes in the design process. Either the system implements more functions

than needed or the set of task models built is incomplete. In the first part of the

alternative the useless functionalities must be removed. In the second part either task

models using this functionality are added or the use of this functionality will never

appear in any of the scenarios to be built.

The role of the correspondence checker is to notify any inconsistency between the

CTT and the ICO specifications. We can imagine it could provide recommendations

on how to correct these mistakes; however, this has not been implemented yet. After

having put the task model and the system model into correspondence, we produce a

CTT-ICO correspondence file.

Execution: the Scenario Player. As a scenario is a sequence of tasks and as

we are able to put a task and a user service into correspondence, it is now possible to

convert the scenarios into a sequence of firing of transitions in the ICO specification.

An ICO specification can be executed in the ICO environment and behaves accord-

ing to the high-level Petri net describing its behavior. As the CTT scenarios can be

converted into a sequence of firing of transitions, it can directly be used to command

the execution of the ICO specification.

www.manaraa.com

380 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

To this end we have developed a tool dedicated to the execution of an ICO formal

description of a case study driven by a scenario extracted from a task model (see part 7

of Figure 17.23).

Application on the Case Study. This section presents the application of the

integration framework presented in Section 17.8 to the Air Traffic Control case study

presented in section 17.7.1.

Figure 17.24 presents the correspondence editor introduced above. The left-hand

side of the window contains the task model that has been introduced in Section 17.7.2

and loaded into the correspondence editor. In the case study under consideration, only

one task model can be loaded. However, if cooperative task models are considered,

the correspondence editor makes it possible to include several task models. In such a

case, the “Task Tree” panel includes tabs widget for each task model. In this panel the

set of interactive tasks are displayed. On the right-hand side of Figure 17.24 the panel

Set of User Services displays the set of user services in the ICO specification that has

been loaded. Here again it is possible to load several ICOs. The set of user services of

each ICO appears in a separate tab widget.

Figure 17.24 Association of interactive tasks and user services

The lower part of the window in Figure 17.24 depicts the set of associations that

have been performed when all user services in the ICOs that have been loaded have

been associated with all the interactive tasks loaded in the “Task Tree” panel the

“Launch Scenario Player” button is available.

Clicking on this button opens the window presented in Figure 17.25 corresponding

to the scenario player. This tool allows for loading a scenario (produced using CTTE

tool presented in Figure 17.8) and executing it in PetShop. The scenario can thus

be considered as a driver replacing user interaction that would normally drive the

execution of the ICO specification.

The right-hand side of Figure 17.25 presents the set of actions in the selected sce-

nario. The first line in the scenario represents the current task in the scenario. In

Figure 17.25 the current task is “Select a plane” and is a user tasks, i.e., the task is

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 381

performed entirely by the user without interacting with the system. Clicking on the

“Perform Task” button triggers the task and the next task in the scenario becomes the

current task.

Figure 17.25 The scenario player

Figure 17.26 shows the scenario player in use. The right-hand side of the fig-

ure shows the execution of the ICOs specification with the two main components: the

Air Traffic Control application with the radar screen and the ATC simulator allowing

for test purpose to add planes in the sector.

Figure 17.26 Execution of the scenario of the system

Some tasks of “interactive” or “application” type require runtime information to

be performed. This is the case for instance of interactive task “Click plane” that

correspond to the user’s action click on a plane. Of course, the click can only occur on

one of the “current” planes in the sector and thus, the identification number cannot be

known at design time and thus cannot be represented in the task model.

Figure 17.27 gives an example of this aspect. Triggering the action “Click plane”
in the task model requires a parameter, i.e., a plane identifier. As this interactive task

www.manaraa.com

382 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

has been related to the user service “UserAssume” (in the correspondence editor) the

triggering of this task triggers the corresponding user service. However, the triggering

of this service requires one of the values in the input place of the transition “UserAs-
sume” in the ObCS of the class “MefistoPlaneManager” (see Figure 17.11), i.e., one

of the objects planes in the place Planes. In order to provide those values to the sce-

nario player the set of all the objects in the place Planes is displayed on the right-hand

side of the scenario player (see Figure 17.27).

Figure 17.27 Interaction between scenario and current execution: plane IDs are selected

at runtime

Figure 17.28 shows the interaction occurring while selecting a value for the fre-

quency. The set of frequencies in the place Frequencies (see Figure 17.19) are dis-

played for the user’s selection in the scenario player.

Figure 17.29 presents the dialogue window displayed when the scenario has been

successfully played on the description of the application using the ICO formalism. A

scenario fails when at some point no action can be performed and the list of actions

still to be performed is not empty.

17.9 CONCLUSIONS

In this chapter we have used a very simple example to show that creativity must remain

an explicit phase in the design process of interactive systems and thus that generation

of interactive systems from task models cannot lead to efficient interactive systems.

In contrast to related work in the field such as Paterno et al. (1999), we have tried to

show here that the generation of an interactive system from task models is not a valid

use of a task model as:

Either you need to add information in the task model in order to be able to

generate the interactive system from it and in that case this is not a task model

anymore (this is done for instance in the work from (Bodart et al., 1995).

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 383

Figure 17.28 Interaction between scenario and current execution: values for frequency

are selected at runtime

Figure 17.29 End of the execution of the scenario on the system model

Or you can generate a basic interactive system that does not cover efficiently

users’ activities. This has been shown in the example above where the Tic-

Tac-Toe application supports users’ strategy in selecting the best number. This

strategic part of users’ activity was not represented in the task model, as this

kind of model is not meant to encompass this kind of information.

www.manaraa.com

384 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

We also believe (but we have not shown it here for space reasons) that generating a

task model from a system model does not bring a lot to interactive systems’ design, as

this is advocated in Lu et al. (1999).

This chapter has presented work that has been done in order to bridge the gap be-

tween task modeling and system modeling. The bridge is done by means of scenarios

that are considered here as traces of use of a task model as well as test cases of the sys-

tem model. The use of scenarios we proposed takes place within a generic framework.

This generic framework is thoroughly supported by dedicated software tools.

The chapter has not presented the fact that the proposed framework and its related

tools support in the same way cooperative application. The environment proposed for

both task modeling and scenario extraction supports the editing of cooperative tasks.

The environment proposed for both editing and executing the formal description of the

interactive applications supports distributed execution of models according to CORBA

standard.

On the system modeling side, further work is currently undertaken in order to make

the editing of the presentation part of the ICO models easier. Indeed, currently both

activation and rendering functions are edited in a textual way while graphical edition

with a direct manipulation style would make this task easier. This integration frame-

work based on scenario can be generalised to other task models provided they make

explicit the distinction between system tasks, user task, and interactive tasks.

Acknowledgements

The authors want to thank Rémi Bastide for his previous works on the draft of this

topic.

References

Bastide, R. and Palanque, P. A. (1990). Petri net objects for the design, validation and

prototyping of user-driven interfaces. In Diaper, D., Gilmore, D. J., Cockton, G.,

and Shackel, B., editors, INTERACT 1990, pages 625–631. North-Holland.

Bastide, R., Palanque, P. A., Sy, O., Le, D.-H., and Navarre, D. (1999). Petri net based

behavioral specification of corba systems. In Donatelli, S. and Kleijn, H. C. M.,

editors, ICATPN, Lecture Notes in Computer Science, volume 1639, pages 66–85.

Springer.

Biere, M., Bomsdorf, B., and Szwillus, G. (1999). Specification and simulation of task

models with vtmb. In CHI’99 extended abstracts on Human factors in computing
systems, pages 1–2. ACM Press.

Bodart, F., Hennebert, A. M., Leheureux, J. M., and Vanderdonckt, J. (1995). A model-

based approach to presentation: A continuum from task analysis to prototype. In

Bodart, F., editor, Focus on Computer Graphics Series, pages 77–94. Springer-

Verlag.

Bodart, F., Hennebert, A.-M., Provot, I., Leheureux, J.-M., and Vanderdonckt, J.

(1994). A model-based approach to presentation: A continuum from task analy-

sis to prototype. In Paternò, F., editor, DSV-IS, pages 77–94. Springer.

www.manaraa.com

TASK MODELS AND SYSTEM MODELS AS A BRIDGE BETWEEN HCI AND SE 385

Carroll, J. M., editor (1995). Scenario-based design: Envisioning work and technology
in system development. New York: Wiley.

David, N., Philippe, P., and Bastide., R. (2005). Specification of middles touch screen

using interactive cooperative objects.

Lecerof, A. and Paternò, F. (1998). Automatic support for usability evaluation. IEEE
Trans. Softw. Eng., 24(10):863–888.

Lu, S., Paris, C., and Linden, K. V. (1999). Toward the automatic construc-

tion of task models from object-oriented diagrams. In Proceedings of the IFIP
TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for
Human-Computer Interaction, pages 169–189.

Moher, T., Dirda, V., Bastide, R., and Palanque, P. A. (1996). Monolingual, articu-

lated modeling of users, devices, and interfaces. In Bodart, F. and Vanderdonckt, J.,

editors, DSV-IS, pages 312–329. Springer.

Norman, D. A. (1986). Cognitive engineering. In Norman, D. A. and Draper, S. W.,

editors, User centered system design: New perspectives on human-computer inter-
action, pages 31–61. Erlbaum, Hillsdale, NJ.

OMG (1990). The common object request broker: Architecture and specification.

Palanque, P. A. and Bastide, R. (1997). Synergistic modeling of tasks, users and sys-

tems using formal specification techniques. Interacting with Computers, 9(2):129–

153.

Palanque, P. A., Bastide, R., and Paternò, F. (1997). Formal specification as a tool

for objective assessment of safety-critical interactive systems. In Howard, S., Ham-

mond, J., and Lindgaard, G., editors, IFIP Conference Proceedings, volume 96,

pages 323–330. Chapman & Hall.

Palanque, P. A., Bastide, R., and Sengès, V. (1995). Formal specification as a tool for

objective assessment of safety-critical interactive systems. In Bass, L. J. and Unger,

C., editors, IFIP Conference Proceedings, volume 45, pages 189–212. Chapman &

Hall.

Paternò, F. (1999). Model-Based Design and Evaluation of Interactive Applications.

Springer-Verlag, London, UK.

Paternò, F., Breedvelt-Schouten, I. M., and de Koning, N. (1999). Deriving presenta-

tions from task models. In Proceedings of the IFIP TC2/TC13 WG2.7/WG13.4 Sev-
enth Working Conference on Engineering for Human-Computer Interaction, pages

319–337. Kluwer.

Puerta, A. R. and Eisenstein, J. (1999). Towards a general computational framework

for model-based interface development systems. In Intelligent User Interfaces,

pages 171–178.

van Welie, M., van der Veer, G. C., and Eli‘̀ens, A. (1998). An ontology for task

world models. In Markopoulos, P. and Johnson, P., editors, Design, Specification
and Verification of Interactive Systems ’98, pages 57–70. Springer-Verlag.

www.manaraa.com

Author Index

Abed, M. 268

Abotel, K. 336

Abowd, G. 67, 179, 336

Abowd, G. D. 179

Abrams, M. 140, 147, 155, 281

Abran, A. 67, 238

Adam, E. 264

Adams, R. 85

Agile Alliance 11

Agrawal, A. 113, 134

Akşit, M. 263

Akehurst, D. H. 112, 134

Aksit, M. 183

Alexander, C. 58, 230

Ali, M. F. 147, 155

Altov, H. 212

Altshuller, G. 212

Anderson, J. R. 202

Angel, S. 230

Artim, J. M. 249

Attwood, T. K. 61

Azevedo, P. 280

Baecker, R. M. 68

Baker, K. 336

Balbo, S. 263

Ballantyne, M. 319

Balme, L. 179

Balzert, H. 111

Banerjee, I. 336

Barclay, P. J. 111

Barralon, N. 179

Basili, V. R. 205

Bass, L. 17, 19, 85, 213, 226–228, 246

Bastide, R. 211, 358, 360, 361, 364, 370,

372, 376

Bastien, C. 176, 179, 193

Batongbacal, A. L. 140, 281

Batory, D. 320

Baxter, I. 319

Beale, R. 67, 179, 336

Beck, K. 12, 217, 305

Beirekdar, A. 258

Bellotti, V. 211

Benyon, D. 179

Bergh, J. V. 209

Bergmans, L. 263

Berman, D. 320

Bettin, J. 135

Beyer, H. 54, 201, 209

Bézivin, J. 183, 189

Biddle, R. 28

Biere, M. 359

Björner, D. 202

Blandford, A. 180

Bleul, S. 155, 156

Bodart, F. 108, 115, 120, 155, 358, 359,

382

Bøegh, J. 205

Bogdan, R. 204

Bomsdorf, B. 359

Bonnardel, B. 108, 109

Booch, G. 11, 49

Boocock, P. 112

Booth, K. S. 68

Bosch, J. 227, 246, 247

Bouillon, L. 110, 116, 122, 126, 179, 281

Bourguin, G. 263

Breedvelt-Schouten, I. M. 382

387

www.manaraa.com

388 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Bregar, K. 320

Briand, L. C. 205

Brinck, T. 336

Brown, J. 108

Buchenau, M. 210, 214

Buschmann, F. 237

Byrne, M. D. 336

Calvary, G. 110, 116, 179, 194–196, 281

Campos, P. 11, 20, 21

Campos, P. F. 20

Canfora, G. 318, 319, 327

Card, S. K. 176

Carey, T. 179

Carlson, D. 102

Carr, V. 337

Carroll, J. M. 54, 208, 212, 228

Carter, J. A. 84, 85, 95, 101

Castillo, J. C. 336

Champin, P.-A. 263

Chieu, K. 126

Chikofsky, E. J. 126, 281

Clarke, P. J. 352

Clements, P. 212, 226, 227

Cockburn, A. 31

Cockton, G. 189, 203, 205

Cogenetics Corporation 57, 59

Comella-Dorda, S. 319

Conallen, J. 14

Coninx, K. 153, 209

Constantine, L. 31

Constantine, L. L. 11, 28–35, 45, 49, 179

Cooper, A. 31, 54, 56, 57

Cooper, R. 111

Corlett 258

Cortellessa, V. 84, 85

Coutaz, J. 110, 116, 179, 180, 194–196,

263, 278, 279, 281

Coyette, A. 150

Cross, J. H. 126, 281

Cunha, J. F. 14

Cysneiros, L. M. 84, 85

Czarnecki, K. 125, 188

Dâassi, O. 281

David, B. 293

David, B. T. 289, 295

David, N. 372

Davison, H. J. 208

de Koning, N. 382

de Lima, J. V. 336

Demeure, A. 179, 196, 281

Demeyer, S. 113, 133

Denis, C. 179

Depanfilis, S. 205

Depaulis, F. 263

Depke, R. 113

Desmarais, M. C. 246, 248, 251

Dirda, V. 361

Dix, A. 67, 179, 336

Donyaee, M. 179, 278

Dowell, J. 258

D’Souza, D. F. 108, 114

Dubinko, M. 280

Ducasse, S. 133, 263

Duignan, M. 28

Duyne, D. K. V. 59

Dwyer, M. B. 337

Dâassi, O. 179

Eberlein, A. 85

Egyed-Zsigmond, E. 263

Ehn, P. 54

Ehrig, H. 119

Eisenecker, U. W. 125

Eisenstein, J. 110, 141, 142, 359

Ektare, M. 336

El-Ramly, M. 263, 318, 323, 324, 327

Eliëns, A. 359

Elwert, T. 174

Engelberg, D. 59

Engels, G. 119

Engeström, Y. 29

Erickson, T. 59

et al. 263

Eyferth, K. 213

Ezzedine, H. 258, 264–266, 268

Fasolino, A. 318, 319, 327

Favre, J. M. 182–185, 194–196

Fenton, N. 204

Ferre, X. 247

Findlay, J. 67, 179

Finlay, J. 336

Fiskdahl-King, I. 230

Florins, M. 280

Foley, J. D. 336

Folmer, E. 227, 246, 247

Forbrig, P. 73

Fourney, D. 84, 95, 101

www.manaraa.com

INDEX 389

Fowler, M. 35, 305

Frattolillo, G. 318, 319, 327

Freitas, C. M. D. S. 336

Freund, R. 113

Gaffar, A. 85

Galindo, M. 211

Galliers, J. 204

Gamma, E. 74, 230, 260, 287, 288

Gay, G. 28

Gerber, A. 109, 112

Gilman, A. S. 141

Girard, P. 263

Gı̂rba, T. 263

Goble, C. A. 111

Gogolla, M. 109

Goldberg, A. 246

Goodger, B. 280

Gorp, P. V. 188

Gracanin, D. 266

Grady, R. B. 205

Granlund, A. 60

Gray, P. D. 111

Gray, W. D. 202

Grechanik, M. 320

Greenberg, S. 336

Griffiths, T. 111

Grislin-Le Strugeon, E. 264

Grolaux, D. 179

Grudin, J. 57, 62, 218

Guittet, L. 263

Gutwin, C. 336

Haberstroh, B. 113

Hackos, J. T. 31

Hansman, R. J. 208

Harstad, B. 108, 109

Hartson, H. R. 133, 140, 336

Hashmi, N. 336

Hayne, C. 249

Hearst 258, 336, 351

Heckel, R. 113

Helm, R. 74, 230, 260, 287, 288

Hembrooke, H. 28

Hendersons-Sellers, B. 49

Hennebert, A.-M. 358, 359

Hickson, I. 280

Hilbert 258

Hilbert, D. M. 336, 351

Hines, L. 337

Hix, D. 133, 140, 336

Ho, W. M. 112

Hoegh, R. T. 203

Hofer, E. 336

Hoffman, R. R. 202

Hofmann, F. 111

Holland, S. 179

Holtzblatt, K. 54, 201, 209

Hong, I. 59

Hong, J. I. 59

Hornbaek, K. 205

Hornof, A. 336

Huang, F. 88

Huang, R. 20

Huberman, M. 204

Hudson, S. E. 174, 175

Hume, D. 203

Hvannberg, E. T. 205, 207, 208

Hyatt, D. 280

IEEE 134, 135

IFIP 179

Iglinski, P. 318, 323

Iivari, J. 20

Ishikawa, S. 230

ISO 85, 247

ISO/IEC 202

Ivory 258, 336, 351

Ivory, M. Y. 258

JAC 263

Jackson, M. 209

Jacobson, I. 11, 31, 49

Jacobson, M. 230

Jagne, J. 85

Jambon, F. 263

Jano, B. 156

Janssen, C. 111

Janssens, D. 113

Jarzabek, S. 20

Javahery, H. 59, 60, 65, 73, 76

Jerome, B. 84, 85

Jézéquel, J. M. 112

Jiang, Y. 318, 325, 327

Johannsson, H. 208

John, B. 85

John, B. E. 17, 19, 213, 226, 227, 246, 336

Johnson, P. 174

Johnson, R. 74, 230, 260, 287, 288

JTidy 326

AUTHOR

www.manaraa.com

390 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Jursito, N. 247

Kapoor, R. 323, 324

Kaptalinin, V. 28

Karsai, G. 113, 134

Karsenty, L. 179

Kazman, R. 84, 85, 212, 226–228

Kennedy, J. B. 111

Kent, S. 112, 134

Khelifi, A. 238

Kieras, D. E. 336

Kindler, E. 270

Kitchenham, B. 205

Klein, M. 212, 226

Kline, R. B. 179, 278

Klotz, J. 280

KMADe 273

Kollmann, R. 109

Kolski, C. 258, 264–266

Kontogiannis, K. 319

Koskimies, K. 352

Koskimies, O. 280

Koyani, S. 336

Krasner, G. E. 279

Krause, P. 204

Kreowski, H.-J. 109, 119

Kruchten, P. 11

Kruschinski, V. 111

Kurtev, I. 183

Kuske, S. 109

Küster, J. M. 113

Kyng, M. 31, 364

Laakso, S. A. 59

Lacaze, X. 211

Lafrenière, D. 60

Lamming, M. 237

Landauer, T. K. 68

Landay, J. 59

Landay, J. A. 59, 73

Laporte, P. 258

Larman, C. 114

Law, L. 205

Lawley, M. 109, 112

Le, D.-H. 372

Le Guennec, A. 112

Lecerof, A. 360

Lédeczi, A. 113, 134

Lee, W. O. 57

Lefebvre, E. 67

Leheureux, J.-M. 358, 359

Leigh, L. 280

Lewandowski, A. 263

Limbourg, Q. 110, 111, 113, 116, 122,

142, 179, 281

Linden, K. V. 384

Liu, J. 84, 95, 101

Liu, Z. 319

Lockwood, L. A. D. 11, 29–32, 34, 35, 45,

179

Lonczewski, F. 174

Lopez, V. 122, 281

Lu, S. 384

Luo, P. 119, 133, 175

Luyten, K. 153, 281

López, M. 156

Macaulay, C. 28

MacLean, A. 211

Macq, B. 179

Macq, M. 122

Maguire, M. 258

Mahajan, R. 336

Major, L. 208

Mancini, C. 180, 287

Mariage, C. 258

Markopoulos, P. 174

Marsh, T. 336

Martin, B. 156

Märtin, C. 174

Masserey, G. 293

Matzko, S. 352

Maxwell, J. A. 204

May, J. 180

McGrenere, J. 68

McKenzie, K. 63

McKirdy, J. 111

McMenamin, S. M. 33

Mehlich, M. 319

Memon, A. M. 335–337, 347

Meniconi, S. 180, 287

Mens, T. 113, 188

Merrick, R. 280

Metzker, E. 10, 85

Meunier, R. 237

Michotte, B. 122, 281

Microsoft Corporation 313

Miettinen, R. 29

Mikkelson, N. 57

Miles, M. B. 204

www.manaraa.com

INDEX 391

Mille, A. 263

Miller, J. 109, 115

Minocha, S. 204

Moher, T. 361

Molich, R. 336

Monahan, R. 352

Moon, B. M. 202

Moore, M. M. 337, 352

Moran, T. P. 176, 211

Morasca, S. 205

Moreno, A. M. 247

Mori, G. 111, 113, 120, 187, 189, 273,

281, 294

Morley, S. 336

Mossienko, M. 319

Msheik, H. 67

Mueller, W. 155, 156

Mukerij, J. 109, 115

Muller, M. 336

Myers, B. A. 19, 73, 174, 175

Männistö, T. 352

Nagarajan, A. 336

Nanard, J. 109, 110

Nanard, M. 109, 110

Nardi, B. A. 28

Navarre, D. 211, 372

NCBI 61, 67

Neches, R. 175

Neil, M. 204

Newell, A. 176

Newman, W. 237

Nielsen, C. M. 203

Nielsen, J. 63, 64, 179, 258, 336

Niemann, D. 111

Niessen, C. 213

Nigay, L. 179, 180, 279

Noble, J. 28

Norman, D. A. 28, 29, 229, 360

Nunes, N. J. 14, 20, 21

Object Management Group 85, 102, 112

Oketokoun, R. 246

OMG 371

Ouadou, K. 263, 279

Overgaard, M. 203

Padda, H. K. 179, 278

Palanque, P. A. 211, 358, 360, 361, 364,

370, 372, 376

Palmer, J. 33

Paris, C. 384

Parry-Smith, D. J. 61

Pasquini, A. 205

Pataricza, A. 113

Paternò, F. 189, 273, 294, 366, 376, 382

Paternò, F. 360

Paton, N. W. 111

Patrascoiu, O. 112, 134

Patton, J. 32

Pausch, R. F. 174, 175

Pawlak, R. 273

Pearl, J. 203

Pedersen, M. B. 203

Pennaneac’h, F. 112

Pérez-Quiñones, M. A. 147, 155

Perlman, G. 336

Perry, D. 320

Phanouriou, C. 140, 144, 167, 246, 281

Philippe, P. 372

PHPAspect 263

Pidgeon, C. 319

Pinelle, D. 336

Pollack, M. E. 336, 337

Pompei, A. 84, 85

Pope, S. T. 279

Power, J. F. 352

Preece, J. 54, 179

Pribeanu, C. 258

Prié, Y. 263

Primet, P. 289, 295

Provot, I. 358, 359

Pruitt, J. 57, 62

Puerta, A. 110, 142

Puerta, A. R. 108–111, 141, 359

Punamäki, R. 29

Pycock, J. 174

Queensland University 112

Radhakrishnan, T. 73

Rafla, T. 246, 248, 251

Ragnarsdottir, M. D. 207

Raman, T. V. 280

Raskin, J. 226

Raymond, K. 109, 112

Redish, J. 31, 336

Redmiles 258

Redmiles, D. F. 336, 351

Reimann, R. 31

AUTHOR

www.manaraa.com

392 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Rensik, A. 109

Robert, J. 319

Roberts, D. 280

Robillard, P. N. 246, 248, 251

Robson, D. 246

Roesler, A. 202

Rogers, Y. 54, 179

Rohn, J. A. 336

Rohnert, H. 237

Rosson, M. B. 19, 208, 212

Rouillard, J. 280

Roy, P. V. 179

Rozenberg, G. 117, 119

Rumbaugh, J. 11, 49

Salber, D. 180

Samaan, K. 283, 293

Sampaio do Prado Leite, J. C. 84, 85

Sanchez, M. I. 247

Sandu, D. 232

Santoro, C. 111, 113, 120, 187, 189, 273,

281, 294

Savadis, A. 84

Scapin, D. 176, 179, 193

Schaefer, R. 155, 156

Schlungbaum, E. 174

Schneider, K. 84, 95, 101

Schreiber, S. 174

Scott, K. 35

Seacord, R. 319

Seaman, C. B. 218

Seffah, A. 10, 59, 60, 65, 73, 76, 85, 179,

238, 249, 278

Sengès, V. 360, 376

Seward, L. 319

Shackel, B. 179, 258

Sharp, H. 54, 179

Shell, E. 147, 155

Shneiderman, B. 179, 202, 336

Shum, S. B. 211

Shuster, J. E. 140, 281

Silva, P. P. 111

Silverstein, M. 230

Simon, H. A. 201, 202, 239

Sinnig, D. 73

Smith-Atakan, A. S. 85

Sneed, H. 319

Snyder, C. 31

Soffa, M. L. 336, 337

Sommerlad, P. 237

Sorenson, P. 318, 323, 324, 327

Sorenson, P. G. 263

Sottet, J. S. 194–196

Souchon, N. 281

Spool, J. 336

Srinivasan, P. 266

Stage, J. 203, 205

Stal, M. 237

Stary, C. 113

Steel, J. 109, 112

Stephanidis, C. 84

Strope, J. 35

Stroulia, E. 263, 318, 323–325, 327

Sucrow, B. 113

Sukaviriya, P. N. 336

Sumner, T. 108, 109

Suri, J. F. 210, 214

Suryn, W. 238

Sutcliffe, A. 204

Sweeney, M. 258

Sy, O. 372

Systa, T. 352

Systä, T. 352

Szekely, P. 175

Szwillus, G. 359

Sánchez, D. 156

Tahir, M. F. 57

Taleb, M. 60, 73

Tarby, J.-C. 258, 261, 263

Tarpin-Bernard, F. 283, 289, 293, 295

Taylor, S. J. 204

Thevenin, D. 110, 111, 116, 175, 179,

279, 281

Tichelaar, S. 133

Tidwell, J. 59, 76, 231, 235

Titus, J. 86

Trabelsi, A. 264–266

Tramontana, P. 318, 319, 327

Tran, C. D. 258, 293

Trevisan, D. 179

Trevisan, D. G. 122, 280

Tuomi, J. 352

UIMS 278, 279

University of California 85

Valavanis, K. 266

Van der Poll, J. 85

van der Veer, G. C. 179, 359

www.manaraa.com

INDEX 393

Van Eetvelde, N. 113

Van Roy, P. 179

van Welie, M. 179, 359

Vanderdonckt, J. 108, 110, 111, 113, 115,

116, 120, 122, 126, 132, 142, 150, 155,

179, 258, 270, 280, 281, 358, 359, 382

Vanderheiden, G. C. 141

Varró, D. 113

Varró, G. 113

Vicente, K. J. 209, 210

Vlissides, J. 74, 230, 260, 287, 288

Vural, S. 263

Waage, H. 207

Wallnau, K. 319

Wasmund, M. 280

Waterson, C. 280

Weber, M. 270

Wegner, P. 108

Weisbecker, A. 111

Weiser, M. 197

Welie, M. V. 58, 65, 73, 76, 231

Wermelinger, M. 113

Whitefield, A. 258

Wiklik, A. 246

Wilkins, B. 59, 76

Williams, S. M. 140, 281

Wills, A. C. 108, 114

Wilson, F. 258

Wilson, J. 258

Wilson, S. 174

Winckler, M. A. A. 336

Windl, H. 35

Wixon, D. 336

Wolinski, A. 86

Wolkerstorfer, P. 280

Wood, A. 109, 112

Wood, S. D. 336

Wuyts, R. 263

Young, R. M. 180, 211

Zhang, Q. 85

Ziegert, T. 280

Ziegler, J. 111

Zimmermann, G. 141

Zou, Y. 319

AUTHOR

www.manaraa.com

Subject Index

AAT, 87

Abstract UI, 114, 120

Abstract UI specifications, 324, 325

Accessibility, 83–85, 87, See also AAT87, 252

Web, 319

Activity Map, 37

Activity Profiles, 39

Activity Theory, 29

Adaptability, 289

Agent-based software architecture, 257

AMF, 279, 281

AMF-C, 295

Arch, 279

Architecture

conceptual, 17

of interactive systems, 227, 279

software development, 14

Architecture centric software development, see
Software development

ArgoUML, 85

Aspect-oriented programming, 257

ATC, 207

Boundary-control-entity pattern, 9

CelLEST, 319, 323, 324

Common Access Profile, 84

Common Warehouse Metamodel, 112

ConcurTaskTree, See also CTTExxx, 113,

180, 181, 278, 287, 364–367, 369,

375–377, 379

Context of use, 127

Costs

of conceptual changes, 302

of UI changes, 302

of visual changes, 303

CSS, 166–168

CTT, see ConcurTaskTree

CTTE, 6, 189, 273, 291, 294, 358, 359, 369,

370, 378, 380

Design, 43, 210

abstract interaction, 291

395

interaction patterns, 235

model-based, 289
patterns and software, 231

DISL, 141

Domain models, 291

Evaluation

heuristic, 63

model, 215

usability, 313

Extensions, 188

Extreme programming, 12, 14, 16, 17, 20, 23,

302, 304, 305, 311, 312, 314

assumptions, 314

planning levels, 305, 309, 311

Forward Engineering, 119

GAINS design process, 301, 304, 305, 313, 314

Graph transformations, 111

GUI Ripping

usability evaluation, 335

Heuristic evaluation, 63

MaTTs, 87

MBAUI, see Model based UI

MDA, see Model driven architecture

MDE, see Model driven engineering

Methodology

MAT, 86

MTT, 92

PUF, 84

www.manaraa.com

396 HUMAN-CENTERED SOFTWARE ENGINEERING, VOLUME II

Model

transformation, 112

Model driven engineering, 174

Model based UI, 113, 174, 175, 187, 278

MB-IDE, 173

MBAUI, 110, 111

Model based UI , See also Model based

designxxx, see Model driven engi-

neering

Model driven architecture, 109, 115

Model driven engineering, 4, 173–175, 181–

187, 189, 190

Modeling

cause-effect relationships, 237

MTT, 92

MVC, 14, 225–227, 246, 263

P2P, see Persona to Mapper Tool

PAC, 14, 225–227, 263, 278, 279

facets, 281, 282

PAC-Amodeus, 279

Participation Map, 40

Pattern Oriented Design, 73

Patterns
and conceptual design, 57

and scenarios, 230

composition, 72

interaction design, 235

selection, 72

selection and composition, 65

software design, 231

tasks and interaction, 288

Persona to Mapper Tool, 74

Personas

creation, 70

user experience modeling, 56

Petri nets, 111, 266, 267, 359, 361, 370, 371,

376

PetShop, 6, 358, 359, 365, 370, 372

Plasticity, 175, 179–181, 190, 191, 196, 279

PNML, See also Petri nets270

POD, see Pattern-Oriented Design

POD model, 60

Prototypes, 66

PUF, see Putting Usability First

Putting Usability First, 84

Reengineering, 317–332

interaction, 6, 317, 318, 323

Requirements

and SE specifications, 87, 88

elicitation, 209

templates, 90

tools and guidance, 84

Reverse Engineering, 126

Role Profiles, 40

Scenarios, 228

and patterns, 230

Seeheim, 14, 227, 279

SOAP, 167

Software development

architecture centric, 9, 14

obstacles to UCD integration, 10

use cases, 11

Specifications

and requirements, 88

SE and UE mapping, 92

TADEUS, 174

Tasks, See also ConcurTaskTreexxx, 357

and goals, 359

and patterns, 234

as operators, 177

cases, 33, 42

classes, 14

composite task cases, 33

coupling, 120

domain, 127

in participation map, 46

mapping to actors, 96

model, 44, 113, 287, 357, 359, 368

modeling, 324

models, 291

operators, 180

performance map, 42

performance modeling, 42

PUF tasks, 97, 98

reengineering, 321, 322

scenarios, 31, 363

temporal ordering, 121

to abstract UI, 119

transformation tasks, 113

use cases, 31

workspace, 180, 188

TaskSketch, 11, 17, 18, 21–24

Traceability, 17–19, 21, 54, 78, 134

Transformation

development of UI, 107

graph, 111, 112

UCD, see User Centered Design

UEDT, 87

UIDL, 140

UIML, 246, 280, 281

UML, 20, 23, 35, 49, 85, 180, 187, 188

activity diagram, 49

and CTT, 181

boundary-control-entity, 9

PUF mapping, 95

PUF UML tags, 94

reverse engineering, 352

UEDT, 91

www.manaraa.com

INDEX 397

Unified Process, 10–12, 14, 16, 17, 23, 24

UP, see Unified Process
Usability

evaluation, 313

Usability evaluation, 257

automated, 336

through reverse engineering, 335

Usability traces analysis, 257

Usage-Centered Design, 31

Use cases, 9, 12, 14, 17–19, 31, 95, 249, 252,

254

essential, 17, 29, 42

software development, 11

User Centered Design, 10–12, 23, 53–55, 69

and patterns, 55, 60, 78

and personas, 55, 76

and usage centered design, 31

and user stories, 12

case tools, 20

ills of, 28

User experience

psychometric evaluation, 63

User Roles, 32

USERLab, 84, 85

UX-P, 54, 70, 76, 78

UX-process, 70

W3C, 102, 140, 142, 166–169

Wap interfaces, 323

Web interfaces, 323

Web services, 325

XIML, 141

XMI, 85, 88, 99, 101, 102

XP, see Extreme Programming

XUL, 141

SUB ECTJ

use cases, 11

